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Introduction

1. What is mathematical logic about?

• provide a uniform, unambiguous language

for mathematics

• make precise what a proof is

• explain and guarantee exactness, rigor and

certainty in mathematics

• establish the foundations of mathematics

B1 (Foundations)
= B1.1 (Logic) + B1.2 (Set theory)

N.B.: Course does not teach you to think logically, but

it explores what it means to think logically
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2. Historical motivation

• 19th cent.:

need for conceptual foundation in analysis:

what is the correct notion of

infinity, infinitesimal, limit, ...

• attempts to formalize mathematics:

- Frege’s Begriffsschrift

- Cantor’s naive set theory:

a set is any collection of objects

• led to Russell’s paradox:

consider the set R := {S set | S 6∈ S}

R ∈ R ⇒ R 6∈ R contradiction
R 6∈ R ⇒ R ∈ R contradiction

❀ fundamental crisis in the foundations

of mathematics
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3. Hilbert’s Program

1. find a uniform (formal) language

for all mathematics

2. find a complete system of

inference rules/ deduction rules

3. find a complete system of

mathematical axioms

4. prove that the system 1.+2.+3. is

consistent, i.e. does not lead to

contradictions

⋆ complete: every mathematical sentence can be
proved or disproved using 2. and 3.

⋆ 1., 2. and 3. should be
finitary/effective/computable/algorithmic
so, e.g., in 3. you can’t take as axioms
the system of all true sentences in mathematics

⋆ idea: any piece of information is of finte length
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4. Solutions to Hilbert’s program

Step 1. is possible in the framework of

ZF = Zermelo-Fraenkel set theory or

ZFC = ZF + Axiom of Choice

(this is an empirical fact)

❀ B1.2 Set Theory HT 2017

Step 2. is possible in the framework of

1st-order logic:

Gödel’s Completeness Theorem

❀ B1.1 Logic - this course

Step 3. is not possible (❀ C1.2):

Gödel’s 1st Incompleteness Theorem:

there is no effective axiomatization

of arithmetic

Step 4. is not possible (❀ C1.2):

Gödel’s 2nd Incompleteness Theorem, (but..)
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5. Decidability

Step 3. of Hilbert’s program fails:
there is no effective axiomatization
for the entire body of mathematics

But: many important parts of mathematics
are completely and effectively axiomatizable,
they are decidable, i.e. there is an
algorithm = program = effective procedure

deciding whether a sentence is true or false
❀ allows proofs by computer

Example: Th(C) = the 1st-order theory of C

= all algebraic properties of C:

Axioms = field axioms

+ all non-constant polynomials have a zero

+ the characteristic is 0

Every algebraic property of C follows from these
axioms.
Similarly for Th(R).
❀ C1.1 Model Theory
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6. Why mathematical logic?

1. Language and deduction rules are tailored

for mathematical objects and mathemati-

cal ways of reasoning

N.B.: Logic tells you what a proof is, not how to

find one

2. The method is mathematical:

we will develop logic as a calculus with sen-

tences and formulas

⇒ Logic is itself a mathematical discipline,

not meta-mathematics or philosophy,

no ontological questions like

what is a number?

3. Logic has applications towards other areas

of mathematics, e.g. Algebra, Topology,

but also towards theoretical computer sci-

ence
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PART I:
Propositional Calculus

1. The language of
propositional calculus

... is a very coarse language with limited ex-

pressive power

... allows you to break a complicated sentence

down into its subclauses, but not any further

... will be refined in PART II Predicate Calcu-

lus, the true language of 1st order logic

... is nevertheless well suited for entering for-

mal logic
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1.1 Propositional variables

• all mathematical disciplines use variables,

e.g. x, y for real numbers

or z, w for complex numbers

or α, β for angles etc.

• in logic we introduce variables p0, p1, p2, . . .

for sentences (propositions)

• we don’t care what these propositions say,

only their logical properties count,

i.e. whether they are true or false

(when we use variables for real numbers,

we also don’t care about particular num-

bers)
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1.2 The alphabet
of propositional calculus

consists of the following symbols:

the propositional variables p0, p1, . . . , pn, . . .

negation ¬ - the unary connective not

four binary connectives →, ∧, ∨, ↔

implies, and, or and if and only if respec-

tively

two punctuation marks ( and )

left parenthesis and right parenthesis

This alphabet is denoted by L.

Note that these are abstract symbols.

Note also that we use →, and not ⇒.
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1.3 Strings

• A string (from L)

is any finite sequence of symbols from L

placed one after the other - no gaps

• Examples

(i) → p17()
(ii) ((p0 ∧ p1) → ¬p2)
(iii) ))¬)p32

• The length of a string is the number of

symbols in it.

So the strings in the examples have length

4,10,5 respectively.

(A propositional variable has length 1.)

• we now single out from all strings those

which make grammatical sense (formulas)

Lecture 2 - 4/8



1.4 Formulas

The notion of a formula of L is defined (re-

cursively) by the following rules:

I. every propositional variable is a formula

II. if the string A is a formula then so is ¬A

III. if the strings A and B are both formulas

then so are the strings

(A→ B) read A implies B

(A ∧B) read A and B

(A ∨B) read A or B

(A↔ B) read A if and only if B

IV. Nothing else is a formula,

i.e. a string φ is a formula if and only if φ

can be obtained from propositional variables

by finitely many applications of the formation

rules II. and III.
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Examples
• the string ((p0 ∧ p1) → ¬p2) is a formula

(Example (ii) in 1.3)

Proof:

p0

❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂

p1

qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

p2

II.III.

(p0 ∧ p1)

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

¬p2

✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉

III.

((p0 ∧ p1) → ¬p2)

✷

• Parentheses are important, e.g.

(p0∧ (p1 → ¬p2)) is a different formula and

p0 ∧ (p1 → ¬p2) is no formula at all

• the strings → p17() and ))¬)p32 from Ex-

ample (i) and (iii) in 1.3 are no formulas -

this follows from the following Lemma:
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Lemma If φ is a formula then

- either φ is a propositional variable

- or the first symbol of φ is ¬
- or the first symbol of φ is (.

Proof: Induction on n := the length of φ:

n = 1: then φ is a propositional variable -

any formula obtained via formation rules

(II. and III.) has length > 1.

Suppose the lemma holds for all formulas of

length ≤ n.

Let φ have length n+1

⇒ φ is not a propositional variable (n+1 ≥ 2)

⇒ either φ is ¬ψ for some formula ψ - so φ

begins with ¬

or φ is (ψ1 ⋆ ψ2) for some ⋆ ∈ {→,∧,∨,↔} and

some formulas ψ1, ψ2 - so φ begins with (. ✷
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The unique readability theorem

A formula can be constructed in only one way:

For each formula φ exactly one of the follow-

ing holds

(a) φ is pi for some unique i ∈ N;

(b) φ is ¬ψ for some unique formula ψ;

(c) φ is (ψ⋆χ) for some unique pair of formulas

ψ, χ and a unique binary connective

⋆ ∈ {→,∧,∨,↔}.

Proof: Problem sheet ♯1.
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2. Valuations

Propositional Calculus

• is designed to find the truth or falsity of

a compound formula from its constituent

parts

• it computes the truth values

T (‘true’) or F (‘false’) of a formula φ,

given the truth values assigned to

the smallest constituent parts, i.e.

the propositional variables occuring in φ

How this can be done is made precise in the

following definition.
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2.1 Definition
1. A valuation v is a function

v : {p0, p1, p2, . . .} → {T, F}

2. Given a valuation v we extend v uniquely to

a function

ṽ : Form (L) → {T, F}

(Form (L) denotes the set of all formulas of L)

defined recursively as follows:

2.(i) If φ is a formula of length 1, i.e. a propo-

sitional variable, then ṽ(φ) := v(φ).

2.(ii) If ṽ is defined for all formulas of length

≤ n, let φ be a formula of length n+1 (≥ 2).

Then, by the Unique Readability Theorem,

either φ = ¬ψ for a unique ψ

or φ = (ψ ⋆ χ) for a unique pair ψ, χ

and a unique ⋆ ∈ {→,∧,∨,↔},

where ψ and χ are formulas of lenght ≤ n, so

ṽ(ψ) and ṽ(χ) are already defined.
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Truth Tables

Define ṽ(φ) by the following truth tables:

Negation

ψ ¬ψ

T F

F T

i.e. if ṽ(ψ) = T then ṽ(¬ψ) = F

and if ṽ(ψ) = F then ṽ(¬ψ) = T

Binary Connectives

ψ χ ψ → χ ψ ∧ χ ψ ∨ χ ψ ↔ χ

T T T T T T

T F F F T F

F T T F T F

F F T F F T

so, e.g., if ṽ(ψ) = F and ṽ(χ) = T

then ṽ(ψ ∨ χ) = T etc.
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Remark: These truth tables correspond roughly

to our ordinary use of the words ‘not’, ‘if -

then’, ‘and’, ‘or’ and ‘if and only if’, except,

perhaps, the truth table for implication (→).

2.2 Example

Construct the full truth table for the formula

φ := ((p0 ∨ p1) → ¬(p1 ∧ p2))

ṽ(φ) only depends on v(p0), v(p1) and v(p2).

po p1 p2 (p0 ∨ p1) (p1 ∧ p2) ¬(p1 ∧ p2) φ

T T T T T F F

T T F T F T T

T F T T F T T

T F F T F T T

F T T T T F F

F T F T F T T

F F T F F T T

F F F F F T T
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2.3 Example Truth table for

φ := ((p0 → p1) → (¬p1 → ¬p0))

p0 p1 (p0 → p1) ¬p1 ¬p0 (¬p1 → ¬p0) φ

T T T F F T T

T F F T F F T

F T T F T T T

F F T T T T T
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3. Logical Validity

3.1 Definition

• A valuation v satisfies a formula φ

if ṽ(φ) = T

• If a formula φ is satisfied by every valuation
then φ is logically valid or a tautology
(e.g. Example 2.3, not Example 2.2)
Notation: |= φ

• If a formula φ is satisfied by some valuation
then φ is satisfiable (e.g. Example 2.2)

• A formula φ is a logical consequence of
a formula ψ if, for every valuation v:

if ṽ(ψ) = T then ṽ(φ) = T

Notation: ψ |= φ
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3.2 Lemma ψ |= φ if and only if |= (ψ → φ).

Proof: ‘⇒’: Assume ψ |= φ.

Let v be any valuation.

- If ṽ(ψ) = T then (by def.) ṽ(φ) = T ,

so ṽ((ψ → φ)) = T by tt →.

(‘tt ⋆’ stands for the truth table of the connective ⋆)

- If ṽ(ψ) = F then ṽ((ψ → φ)) = T by tt →.

Thus, for every valuation v, ṽ((ψ → φ)) = T ,

so |= (ψ → φ).

‘⇐’: Conversely, suppose |= (ψ → φ).

Let v be any valuation s.t. ṽ(ψ) = T .

Since ṽ((ψ → φ)) = T , also ṽ(φ) = T by tt →.

Hence ψ |= φ.

✷
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More generally, we make the following

3.3 Definition Let Γ be any (possibly infinite)

set of formulas and let φ be any formula.

Then φ is a logical consequence of Γ

if, for every valuation v:

if ṽ(ψ) = T for all ψ ∈ Γ then ṽ(φ) = T

Notation: Γ |= φ

3.4 Lemma

Γ ∪ {ψ} |= φ if and only if Γ |= (ψ → φ).

Proof: similar to the proof of previous lemma

3.2 - Exercise.
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3.5 Example

|= ((p0 → p1) → (¬p1 → ¬p0)) (cf. Ex. 2.3)
Hence (p0 → p1) |= (¬p1 → ¬p0) by 3.2
Hence {(p0 → p1),¬p1} |= ¬p0 by 3.4

3.6 Example

φ |= (ψ → φ)

Proof:

If ṽ(φ) = T then, by tt →, ṽ((ψ → φ)) = T

(no matter what ṽ(ψ) is).

✷
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4. Logical Equivalence

4.1 Definition

Two formulas φ, ψ are logically equivalent

if φ |= ψ and ψ |= φ,

i.e. if for every valuation v, ṽ(φ) = ṽ(ψ).

Notation: φ |==| ψ

Exercise φ |==| ψ if and only if |= (φ↔ ψ)

4.2 Lemma

(i) For any formulas φ, ψ

(φ ∨ ψ) |==| ¬(¬φ ∧ ¬ψ)

(ii) Hence every formula is logically equivalent

to one without ‘∨’.
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Proof:

(i) Either use truth tables
or observe that, for any valuation v:

ṽ(¬(¬φ ∧ ¬ψ)) = F

iff ṽ((¬φ ∧ ¬ψ)) = T by tt ¬
iff ṽ(¬φ) = ṽ(¬ψ) = T by tt ∧
iff ṽ(φ) = ṽ(ψ) = F by tt ¬
iff ṽ(φ ∨ ψ) = F by tt ∨

(ii) Induction on the length of the formula φ:

Clear for lenght 1

For the induction step observe that

If ψ |==| ψ′ then ¬ψ |==| ¬ψ′

and

If φ |==| φ′ and ψ |==| ψ′ then (φ⋆ψ) |==| (φ′⋆ψ′),

where ⋆ is any binary connective.
(Use (i) if ⋆ = ∨)

✷
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4.3 Some sloppy notation

We are only interested in formulas

up to logical equivalence:

If A,B,C are formulas then

((A ∨B) ∨ C) and (A ∨ (B ∨ C))

are different formulas, but logically equivalent.

So here - up to logical equivalene -

bracketting doesn’t matter.

Hence

• Write (A∨B∨C) or even A∨B∨C instead.

• More generally, if A1, . . . , An are formulas,

write A1 ∨ . . . ∨An or
∨n
i=1Ai

for some (any) correctly bracketed version.

• Similarly
∧n
i=1Ai.
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4.4 Some logical equivalences

Let A,B,Ai be formulas. Then

1. ¬(A ∨B) |==| (¬A ∧ ¬B)

So, inductively,

¬
n∨

i=1

Ai |==|
n∧

i=1

¬Ai

This is called De Morgan’s Laws.

2. like 1. with ∨ and ∧ swapped everywhere

3. (A→ B) |==| (¬A ∨B)

4. (A ∨B) |==| ((A→ B) → B)

5. (A↔ B) |==| ((A→ B) ∧ (B → A))
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5. Adequacy of the Connectives

The connectives ¬ (unary) and

→,∧,∨,↔ (binary) are the logical part of our

language for propositional calculus.

Question:

• Do we have enough connectives?

• Can we express everything which is logically

conceivable using only these connectives?

• Does our language L recover all potential

truth tables?

Answer: yes
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5.1 Definition

(i) We denote by Vn the set of all functions

v : {p0, . . . , pn−1} → {T, F}

i.e. of all partial valuations, only assigning

values to the first n propositional variables.

Hence ♯Vn = 2n.

(ii) An n-ary truth function is a function

J : Vn → {T, F}

There are precisely 22
n
such functions.

(iii) If a formula φ ∈ Form(L) contains only

prop. variables from the set {p0, . . . , pn−1}
– write ‘φ ∈ Formn(L)’ –

then φ determines the truth function

Jφ : Vn → {T, F}
v 7→ ṽ(φ)

i.e. Jφ is given by the truth table for φ.
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5.2 Theorem

Our language L is adequate,

i.e. for every n and every truth function

J : Vn → {T, F} there is some φ ∈ Formn(L)

with Jφ = J.

(In fact, we shall only use the connectives ¬,∧,∨.)

Proof: Let J : Vn → {T, F} be any n-ary truth

function.

If J(v) = F for all v ∈ Vn take φ := (p0 ∧ ¬p0).

Then, for all v ∈ Vn: Jφ(v) = ṽ(φ) = F = J(v).

Otherwise let U := {v ∈ Vn | J(v) = T} 6= ∅.

For each v ∈ U and each i < n define the for-

mula

ψvi :=

{
pi if v(pi) = T

¬pi if v(pi) = F

and let ψv :=
∧n−1
i=0 ψ

v
i .
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Then for any valuation w ∈ Vn one has the

following equivalence (⋆):

w̃(ψv) = T iff
for all i < n :
w̃(ψvi ) = T

(by tt ∧)

iff w = v (by def. of ψvi )

Now define φ :=
∨
v∈U ψ

v.

Then for any valuation w ∈ Vn:

w̃(φ) = T iff for some v ∈ U : w̃(ψv) = T (by tt∨)
iff for some v ∈ U : w = v (by (⋆))
iff w ∈ U

iff J(w) = T

Hence for all w ∈ Vn: Jφ(w) = J(w), i.e. Jφ =

J.

✷
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5.3 Definition

(i) A formula which is a conjunction of pi’s

and ¬pi’s is called a conjunctive clause

- e.g. ψv in the proof of 5.2

(ii) A formula which is a disjunction of con-

junctive clauses is said to be in

disjunctive normal form (‘dnf’)

- e.g. φ in the proof of 5.2

So we have, in fact, proved the following Corol-

lary:
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5.4 Corollary - ‘The dnf-Theorem’

For any truth function

J : Vn → {T, F}

there is a formula φ ∈ Formn(L) in dnf

with Jφ = J.

In particular, every formula is logically equiva-

lent to one in dnf.
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5.5 Definition

Suppose S is a set of (truth-functional) con-

nectives – so each s ∈ S is given by some truth

table.

(i) Write L[S] for the language with connec-

tives S instead of {¬,→,∧,∨,↔} and define

Form(L[S]) and Formn(L[S]) accordingly.

(ii) We say that S is adequate (or truth func-

tionally complete) if for all n ≥ 1 and for

all n-ary truth functions J there is some

φ ∈ Formn(L[S]) with Jφ = J.
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5.6 Examples

1. S = {¬,∧,∨} is adequate (Theorem 5.2)

2. Hence, by Lemma 4.2(i), S = {¬,∧} is ad-
equate:

φ ∨ ψ |==| ¬(¬φ ∧ ¬ψ)

Similarly, S = {¬,∨} is adequate:

φ ∧ ψ |==| ¬(¬φ ∨ ¬ψ)

3. Can express ∨ in terms of →, so {¬,→} is
adequate (Problem sheet ♯2).

4. S = {∨,∧,→} is not adequate, because any
φ ∈ Form(L[S]) has T in the top row of
tt φ, so no such φ gives Jφ = J¬p0.

5. There are precisely two binary connectives,
say ↑ and ↓ such that S = {↑} and S = {↓}
are adequate.
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6. A deductive system for
propositional calculus

• We have indtroduced ‘logical consequence’:

Γ |= φ – whenever (each formula of) Γ is

true so is φ

• But we don’t know yet how to give an ac-

tual proof of φ from the hypotheses Γ.

• A proof should be a finite sequence

φ1, φ2, . . . , φn of statements such that

– either φi ∈ Γ

– or φi is some axiom (which should clearly

be true)

– or φi should follow from previous φj’s by

some rule of inference

– AND φ = φn
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6.1 Definition

Let L0 := L[{¬,→}] (which is an adequate lan-

guage). Then the system L0 consists of the

following axioms and rules:

Axioms

An axiom of L0 is any formula of the following

form (α, β, γ ∈ Form(L0)):

A1 (α→ (β → α))

A2 (((α→ (β → γ)) → ((α→ β) → (α→ γ)))

A3 ((¬β → ¬α) → (α→ β))

Rules of inference

Only one: modus ponens

(for any α, β ∈ Form(L0))

MP From α and (α→ β) infer β.
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6.2 Definition

For any Γ ⊆ Form(L0) we say that α is de-

ducible (or provable) from the hypotheses Γ if

there is a finite sequence α1, . . . , αm ∈ Form(L0)

such that for each i = 1, . . . ,m either

(a) αi is an axiom, or

(b) αi ∈ Γ, or

(c) there are j < k < i such that αi follows

from αj, αk by MP,

i.e. αj = (αk → αi) or αk = (αj → αi)

AND

(d) αm = α.

The sequence α1, . . . , αm is then called a proof

or deduction or derivation of α from Γ.

Write Γ ⊢ α.

If Γ = ∅ write ⊢ α and say that α is a theorem

(of the system L0).
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6.3 Example For any φ ∈ Form(L0)

(φ→ φ)

is a theorem of L0.

Proof:

α1 (φ→ (φ→ φ))

[A1 with α = β = φ]

α2 (φ→ ((φ→ φ) → φ))

[A1 with α = φ, β = (φ→ φ)]

α3 ((φ→ ((φ→ φ) → φ)) →
→ ((φ→ (φ→ φ)) → (φ→ φ)))

[A2 with α = φ, β = (φ→ φ), γ = φ]

α4 ((φ→ (φ→ φ)) → (φ→ φ))

[MP α2, α3]

α5 (φ→ φ)

[MP α1, α4]

Thus, α1, α2, . . . , α5 is a deduction of (φ → φ)

in L0.

✷
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6.4 Example

For any φ, ψ ∈ Form(L0):

{φ,¬φ} ⊢ ψ

Proof:

α1 (¬φ→ (¬ψ → ¬φ))

[A1 with α = ¬φ, β = ¬ψ]

α2 ¬φ [∈ Γ]

α3 (¬ψ → ¬φ) [MP α1, α2]

α4 ((¬ψ → ¬φ) → (φ→ ψ))

[A3 with α = φ, β = ψ]

α5 (φ→ ψ) [MP α3, α4]

α6 φ [∈ Γ]

α7 ψ [MP α5, α6]

✷
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6.5 The Soundness Theorem for L0

L0 is sound, i.e. for any Γ ⊆ Form(L0) and

for any α ∈ Form(L0):

if Γ ⊢ α then Γ |= α.

In particular, any theorem of L0 is a tautology.

Proof:

Assume Γ ⊢ α and let α1, α2, . . . , αm = α be a

deduction of α in L0.

Let v be any valuation such that ṽ(φ) = T for

all φ ∈ Γ.

We have to show that ṽ(α) = T .

We show by induction on i ≤ m that

ṽ(α1) = . . . = ṽ(αi) = T (⋆)
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i = 1

either α1 is an axiom, so ṽ(α1) = T or α1 ∈ Γ,

so, by hypothesis, ṽ(α1) = T .

Induction step

Suppose (⋆) is true for some i < m.

Consider αi+1.

Either αi+1 is an axiom or αi+1 ∈ Γ,

so ṽ(αi+1) = T as above,

or else there are j 6= k < i+1 such that

αj = (αk → αi+1).

By induction hypothesis

ṽ(αk) = ṽ(αj) = ṽ((αk → αi+1)) = T.

But then, by tt →, ṽ(αi+1) = T

(since T → F is F ).

✷
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For the proof of the converse

Completeness Theorem

If Γ |= α then Γ ⊢ α.

we first prove

6.6 The Deduction Theorem for L0

For any Γ ⊆ Form(L0) and

for any α, β ∈ Form(L0):

if Γ ∪ {α} ⊢ β then Γ ⊢ (α→ β).
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6.6 The Deduction Theorem for L0

For any Γ ⊆ Form(L0) and

for any α, β ∈ Form(L0):

if Γ ∪ {α} ⊢ β then Γ ⊢ (α→ β).

Proof:

We prove by induction on m:

if α1, . . . , αm is derivable in L0

from the hypotheses Γ ∪ {α}

then for all i ≤ m

(α→ αi) is derivable in L0

from the hypotheses Γ.

m=1

Either α1 is an Axiom or α1 ∈ Γ ∪ {α}.
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Case 1: α1 is an Axiom

Then

1 α1 [Axiom]
2 (α1 → (α→ α1)) [Instance of A1 ]
3 (α→ α1) [MP 1,2]

is a derivation of (α→ α1) from hypotheses ∅.

Note that if ∆ ⊢ ψ and ∆ ⊆ ∆′, then obviously

∆′ ⊢ ψ.

Thus (α→ α1) is derivable in L0 from hypothe-

ses Γ.

Case 2: α1 ∈ Γ ∪ {α}

If α1 ∈ Γ then same proof as above works (with

justification on line 1 changed to ‘∈ Γ’).

If α1 = α, then, by Example 6.3, ⊢ (α → α1),

hence Γ ⊢ (α→ α1).
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Induction Step

IH: Suppose result is true for derivations of

length ≤ m.

Let α1, . . . , αm+1 be a derivation in L0 from

Γ ∪ {α}.

Then either αm+1 is an axiom

or αm+1 ∈ Γ ∪ {α} – in these cases proceed as

above, even without IH.

Or αm+1 is obtained by MP from some earlier

αj, αk, i.e. there are j, k < m + 1 such that

αj = (αk → αm+1).

By IH, we have

Γ ⊢ (α→ αk)
and Γ ⊢ (α→ αj),

so Γ ⊢ (α→ (αk → αm+1))
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Let β1, . . . , βr be a derivation in L0 of

(α→ αk) = βr from Γ

and let γ1, . . . , γs be a derivation in L0 of

(α→ (αk → αm+1)) = γs from Γ.

Then

1 β1
... ...

r-1 βr−1
r (α→ αk)

r+1 γ1
... ...

r+s-1 γs−1
r+s (α→ (αk → αm+1))

r+s+1 ((α→ (αk → αm+1)) →
((α→ αk) → (α→ αm+1))) [A2]

r+s+2 ((α→ αk) → (α→ αm+1)) [MP r+s, r+s+1]

r+s+3 (α→ αm+1) [MP r, r+s+2]

is a derivation of (α→ αm+1) in L0 from Γ. ✷
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6.7 Remarks

• Only needed instances of A1, A2 and the

rule MP.

So any system that includes A1, A2 and

MP satisfies the Deduction Theorem.

• Proof gives a precise algorithm for con-

verting any derivation showing Γ ∪ {α} ⊢ β
into one showing Γ ⊢ (α→ β).

• Converse is easy:

If Γ ⊢ (α→ β) then Γ ∪ {α} ⊢ β.

Proof:

... ... derivation from Γ
r α→ β

r+1 α [∈ Γ ∪ {α}]
r+2 β [MP r, r+1]

✷
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6.8 Example of use of DT

If Γ ⊢ (α→ β) and Γ ⊢ (β → γ)

then Γ ⊢ (α→ γ).

Proof:

By the deduction theorem (‘DT’), it suffices

to show that Γ ∪ {α} ⊢ γ.

... ... proof from Γ
r (α→ β)

r+1 ...
... ... proof from Γ

r+s (β → γ)
r+s+1 α [∈ Γ ∪ {α}]
r+s+2 β [MP r, r+s+1]

r+s+3 γ [MP r+s, r+s+2]

✷

From now on we may treat DT as an additional

inference rule in L0.
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6.9 Definition

The sequent calculus SQ is the system where
a proof (or derivation) of φ ∈ Form(L0) from
Γ ⊆ Form(L0) is a finite sequence of sequents,
i.e. of expressions of the form

∆ ⊢SQ ψ

with ∆ ⊆ Form(L0) and Γ ⊢SQ φ as last se-
quent.

Sequents may be formed according to the fol-
lowing rules

Ass: if ψ ∈ ∆ then infer ∆ ⊢SQ ψ

MP: from ∆ ⊢SQ ψ and ∆′ ⊢SQ (ψ → χ)
infer ∆ ∪∆′ ⊢SQ χ

DT: from ∆ ∪ {ψ} ⊢SQ χ infer ∆ ⊢SQ (ψ → χ)

PC: from ∆ ∪ {¬ψ} ⊢SQ χ and
∆′ ∪ {¬ψ} ⊢SQ ¬χ infer ∆ ∪∆′ ⊢SQ ψ

‘PC’ stands for proof by contradiction’

Note: no axioms.
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6.10 Example of a proof in SQ

1 ¬β ⊢SQ ¬β [Ass]

2 (¬β → ¬α) ⊢SQ (¬β → ¬α) [Ass]

3 (¬β → ¬α),¬β ⊢SQ ¬α [MP 1,2]

4 α,¬β ⊢SQ α [Ass]

5 (¬β → ¬α), α ⊢SQ β [PC 3,4]

6 (¬β → ¬α) ⊢SQ (α→ β) [DT 5]

7 ⊢SQ ((¬β → ¬α) → (α→ β)) [DT 6]

So ⊢SQ A3.

We’d better write ‘Γ ⊢L0
φ’ for ‘Γ ⊢ φ in L0’.

6.11 Theorem

L0 and SQ are equivalent: for all Γ, φ

Γ ⊢L0
φ iff Γ ⊢SQ φ.

Proof: Exercise
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7. Consistency, Completeness and
Compactness

7.1 Definition

Let Γ ⊆ Form(L0). Γ is said to be consistent

(or L0-consistent) if for no formula α both Γ ⊢
α and Γ ⊢ ¬α.

Otherwise Γ is inconsistent.

E.g. ∅ is consistent: by soundness theorem,

α and ¬α are never simultaneously true.

7.2. Lemma

Γ ∪ {¬φ} is inconsistent iff Γ ⊢ φ.
(In part., if Γ 6⊢ φ then Γ ∪ {¬φ} is consistent).

Proof: ‘⇐’:

Γ ⊢ φ⇒
Γ ∪ {¬φ} ⊢ φ

Γ ∪ {¬φ} ⊢ ¬φ

}
⇒

Γ ∪ {¬φ}
is inconsistent

‘⇒’:
Γ ∪ {¬φ} ⊢ α

Γ ∪ {¬φ} ⊢ ¬α

}
⇒6.11

Γ ∪ {¬φ} ⊢SQ α

Γ ∪ {¬φ} ⊢SQ ¬α

}

⇒PC Γ ⊢SQ φ ⇒6.11 Γ ⊢ φ

✷
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7.3 Lemma

Suppose Γ is consistent and Γ ⊢ φ.

Then Γ ∪ {φ} is consistent.

Proof: Suppose not, i.e. for some α

Γ ∪ {φ} ⊢ α
Γ ∪ {φ} ⊢ ¬α

}
⇒DT

Γ ⊢ (φ→ α)
Γ ⊢ (φ→ ¬α)

}
Γ⊢φ
⇒ MP

⇒
Γ ⊢ α
Γ ⊢ ¬α

6 \6 \

✷

7.4 Definition

Γ ⊆ Form(L0) is maximal consistent if

(i) Γ is consistent, and

(ii) for every φ, either Γ ⊢ φ or Γ ⊢ ¬φ.

Note: This is equivalent to saying that for

every φ, if Γ ∪ {φ} is consistent then Γ ⊢ φ.

Proof: Exercise
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7.5 Lemma

Suppose Γ is maximal consistent.

Then for every ψ, χ ∈ Form(L0)

(a) Γ ⊢ ¬ψ iff Γ 6⊢ ψ
(b) Γ ⊢ (ψ → χ) iff either Γ ⊢ ¬ψ or Γ ⊢ χ.

Proof:

(a) ‘⇒’: by consistency

‘⇐’: by maximality

(b) ‘⇒’: Suppose Γ 6⊢ ¬ψ and Γ 6⊢ χ
⇒ Γ ⊢ ψ and Γ ⊢ ¬χ
Γ ⊢ (ψ → χ) ⇒MP Γ ⊢ χ 6 \6 \

‘⇐’: Suppose Γ ⊢ ¬ψ
Γ ⊢ (¬ψ → (ψ → χ)) - Problems ♯ 2, (5)(i)

⇒MP Γ ⊢ (ψ → χ)

Suppose Γ ⊢ χ
Γ ⊢ (χ→ (ψ → χ)) - Axiom A1

⇒MP Γ ⊢ (ψ → χ)

✷

Lecture 7 - 3/9



7.6 Theorem

Suppose Γ is maximal consistent.

Then Γ is satisfiable.

Proof:

For each i, Γ ⊢ pi or Γ ⊢ ¬pi (by maximality),

but not both (by consistency)

Define a valuation v by

v(pi) =

{
T if Γ ⊢ pi
F if Γ ⊢ ¬pi

Claim: for all φ ∈ Form(L0):

ṽ(φ) = T iff Γ ⊢ φ

Proof by induction on the length n of φ:

n=1:

Then φ = pi for some i, and so, by def. of v,

ṽ(pi) = T iff Γ ⊢ pi.
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IH: Claim true for all i ≤ n.

Now assume length (φ) = n+1

Case 1: φ = ¬ψ (⇒ length (ψ) = n)

ṽ(φ) = T iff ṽ(ψ) = F tt ¬
iff Γ 6⊢ ψ IH

iff Γ ⊢ ¬ψ 7.5(a)

iff Γ ⊢ φ

Case 2: φ = (ψ → χ)

(⇒ length (ψ), length (χ) ≤ n)

ṽ(φ) = T iff ṽ(ψ) = F or ṽ(χ) = T tt →
iff Γ 6⊢ ψ or Γ ⊢ χ IH

iff Γ ⊢ ¬ψ or Γ ⊢ χ 7.5(a)

iff Γ ⊢ (ψ → χ) 7.5(b)

iff Γ ⊢ φ

So ṽ(φ) = T for all φ ∈ Γ, i.e. v satisfies Γ.

✷

Lecture 7 - 5/9



7.7 Theorem

Suppose Γ is consistent. Then there is a max-

imal consistent Γ′ such that Γ ⊆ Γ′.

Proof:

Form(L0) is countable, say

Form(L0) = {φ1, φ2, φ3, . . .}.

Construct consistent sets

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . .

as follows: Γ0 := Γ.

Having constructed Γn consistently, let

Γn+1 :=

{
Γn ∪ {φn+1} if Γn ⊢ φn+1
Γn ∪ {¬φn+1} if Γn 6⊢ φn+1

Then Γn+1 is consistent by 7.3 and 7.2.
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Now let Γ′ :=
⋃∞
n=0Γn.

Then Γ′ is consistent:

Any proof of Γ′ ⊢ α and Γ′ ⊢ ¬α would use only

finitely many formulas from Γ′, so for some

n, Γn ⊢ α and Γn ⊢ ¬α – contradicting the

consistency of Γn.

Finally, Γ′ is maximal (even in a stronger sense):

for all n, either φn ∈ Γ′ or ¬φn ∈ Γ′. ✷

Note that the proof does not make use of

Zorn’s Lemma.

7.8 Corollary

If Γ is consistent then Γ is satisfiable.

Proof: 7.6 + 7.7 ✷
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7.9 The Completeness Theorem

If Γ |= φ then Γ ⊢ φ.

Proof:

Suppose Γ |= φ, but Γ 6⊢ φ.

⇒ by 7.2, Γ ∪ {¬φ} is consistent

⇒ by 7.8, there is some valuation v such that

ṽ(ψ) = T for all ψ ∈ Γ ∪ {¬φ}

⇒ ṽ(ψ) = T for all ψ ∈ Γ, but ṽ(φ) = F

⇒ Γ 6|= φ: contradiction. ✷

7.10 Corollary

(7.9 Completeness + 6.5 Soundness)

Γ |= φ iff Γ ⊢ φ
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7.11 The Compactness Theorem for L0

Γ ⊆ Form(L0) is satisfiable iff every finite sub-

set of Γ is satisfiable.

Proof: ‘⇒’: obvious –

if ṽ(ψ) = T for all ψ ∈ Γ then ṽ(ψ) = T for all

ψ ∈ Γ′ ⊆ Γ.

‘⇐’:

Suppose every finite Γ′ ⊆ Γ is satisfiable, but

Γ is not.

Then, by 7.8, Γ is inconsistent, i.e. Γ ⊢ α and

Γ ⊢ ¬α for some α.

But then, for some finite Γ′ ⊆ Γ:
Γ′ ⊢ α and Γ′ ⊢ ¬α

⇒ Γ′ |= α and Γ′ |= ¬α (by soundness)
⇒ Γ′ not satisfiable: contradiction.

✷
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PART II:

PREDICATE CALCULUS

so far:

- logic of the connectives ¬,∧,∨,→,↔, . . . (as

used in mathematics)

- smallest unit: propositions

- deductive calculus: checking logical validity

and computing truth tables

−− > sound, complete, compact

now:

- look more deeply into the structure of propo-

sitions used in mathematics

- analyse grammatically correct use of func-

tions, relations, constants, variables and quan-

tifiers

- define logical validity in this refined language

- discover axioms and rules of inference (be-

yond those of propositional calculus) used in

mathematical arguments

- prove: −− > sound, complete, compact
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8. The language of (first-order)
predicate calculus

The language LFOPC consists of the following

symbols:

Logical symbols

connectives: →,¬

quantifier: ∀ (‘for all’)

variables: x0, x1, x2, . . .

3 punctuation marks: ( ) ,

equality symbol:
.
=

non-logical symbols:

predicate (or relation) symbols: P
(k)
n for n ≥

0, k ≥ 1 (P
(k)
n is a k-ary predicate symbol)

function symbols: f
(k)
n for n ≥ 0, k ≥ 1 (f

(k)
n is

a k-ary function symbol)

constant symbols: cn for n ≥ 0
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8.1 Definition

(a) The terms of LFOPC are defined recur-

sively as follows:

(i) Every variable is a term.

(ii) Every constant symbol is a term.

(iii) For each n ≥ 0, k ≥ 1, if t1, . . . , tk are terms,

so is the string

f
(k)
n (t1, . . . , tk)

(b) An atomic formula of LFOPC is any string

of the form

P
(k)
n (t1, . . . , tk) or t1

.
= t2

with n ≥ 0, k ≥ 1, and where all ti are terms.

(c) The formulas of LFOPC are defined recur-

sively as follows:

(i) Any atomic formula is a formula

(ii) If φ, ψ are formulas, then so are ¬φ and

(φ→ ψ)

(iii) If φ is a formula, then for any variable xi
so is ∀xiφ
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8.2 Examples

c0; c3; x5; f
(1)
3 (c2); f

(2)
4 (x1, f

(1)
3 (c2)) are all

terms

f
(3)
2 (x1, x2) is not a term (wrong arity)

P
(3)
0 (x4, c0, f

(2)
3 (c1, x2)) and f

(2)
1 (c5, c6)

.
= x11

are atomic formulas

f
(1)
3 (c2) is a term, but no formula

∀x1f
(2)
2 (x1, c7)

.
= x2 is a formula, not atomic

∀x2P
(1)
0 (x3) is a formula

8.3 Remark

We have unique readability for terms, for atomic

formulas, and for formulas.
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8.4 Interpretations and logical validity for

LFOPC (Informal discussion)

(A) Consider the formula

φ1 : ∀x1∀x2(x1
.
= x2 → f

(1)
5 (x1)

.
= f

(1)
5 (x2))

Given that
.
= is to be interpreted as equality, ∀

as ‘for all’, and the f
(k)
n as actual functions (in

k arguments), φ1 should always be true. We

shall write

|= φ1

and say ‘φ1 is logically valid’.

(B) Consider the formula

φ2 : ∀x1∀x2(f
(2)
7 (x1, x2)

.
= f

(2)
7 (x2, x1) → x1

.
= x2)

Then φ2 may be false or true depending on the

situation:
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- If we interpret f
(2)
7 as + on N, φ2 becomes

false, e.g. 1+2=2+1, but 1 6= 2. So in this in-

terpretation, φ2 is false and ¬φ2 is true. Write

〈N,+〉 |= ¬φ2

- If we interpret f
(2)
7 as - on R, φ2 becomes

true: if x1− x2 = x2− x1, then 2x1 = 2x2, and

hence x1 = x2.

So

〈R,−〉 |= φ2

Lecture 8 - 6/7



8.5 Free and bound variables

(Informal discussion)

There is a further complication: Consider the

formula

φ3 : ∀x0P
(2)
0 (x1, x0)

Under the interpretation 〈N,≤〉 you cannot tell

whether 〈N,≤〉 |= φ3:

- if we put x1 = 0 then yes

- if we put x1 = 2 then no.

So it depends on the value we assign to x1 (like

in propositional calculus: truth value of p0∧ p1
depends on the valuation).

In φ3 we can assign a value to x1 because x1
occurs free in φ3.

For x0, however, it makes no sense to assign a

particular value; because x0 is bound in φ3 by

the quantifier ∀x0.
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9. Interpretations and Assignments

We refer to a subset L ⊆ LFOPC containing

all the logical symbols, but possibly only some

non-logical as a language (or first-order lan-

guage).

9.1 Definition Let L be a language. An in-

terpretation of L is an L-structure A :=

〈A; (fA)f∈Fct(L); (PA)P∈Pred(L); (cA)c∈Const(L)〉,

i.e.

- A is a non-empty set, the domain of A,

- for each k-ary function symbol f = f
(k)
n ∈ L,

fA : Ak → A is a function

- for each k-ary predicate symbol P = P
(k)
n ∈ L,

PA is a k-ary relation on A, i.e. PA ⊆ Ak

(write PA(a1, . . . , ak) for (a1, . . . , ak) ∈ PA)

- for each c ∈ Const(L): cA ∈ A.
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9.2 Definition

Let L be a language and let A = 〈A; . . .〉 be an

L-structure.

(1) An assignment in A is a function

v : {x0, x1, . . .} → A

(2) v determines an assignment

ṽ = ṽA : Terms(L) → A

defined recursively as follows:

(i) ṽ(xi) = v(xi) for all i = 0,1, . . .

(ii) ṽ(c) = cA for each c ∈ Const(L)

(iii) ṽ(f(t1, . . . , tk)) = fA(ṽ(t1), . . . , ṽ(tk)) for

each f = f
(k)
n ∈ Fct(L), where the ṽ(ti) are

already defined.

(3) v determines a valuation

ṽ = ṽA : Form(L) → {T, F}

as follows:
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(i) for atomic formulas φ ∈ Form(L):

- for each P = P
(k)
n ∈ Pred(L) and for all t ∈

Term(L)

ṽ(P (t1, . . . , tk)) =

{
T if PA(ṽ(t1), . . . , ṽ(tk))
F otherwise

- for all t1, t2 ∈ Term(L):

ṽ(t1
.
= t2) =

{
T if ṽ(t1) = ṽ(t2)
F otherwise

(ii) for arbitrary formulas φ ∈ Form(L) recur-

sively:

- ṽ(¬ψ) = T iff ṽ(ψ) = F

- ṽ(ψ → χ) = T iff ṽ(ψ) = F or ṽ(χ) = T

- ṽ(∀xiψ) = T iff ṽ⋆(ψ) = T for all assignments

v⋆ agreeing with v except possibly at xi.

Notation: Write A |= φ[v] for ṽA(φ) = T ,

and say ‘φ is true in A under the assignment

v = vA.’
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9.3 Some abbreviations

We use . . . as abbreviation for . . .

(α ∨ β) ((α→ β) → β)
(α ∧ β) ¬(¬α ∨ ¬β)
(α↔ β) ((α→ β) ∧ (β → α))
∃xiφ ¬∀xi¬φ

9.4 Lemma

For any L-structure A and any assignment v

in A one has

A |= (α ∨ β)[v] iff A |= α[v] or A |= β[v]
A |= (α ∧ β)[v] iff A |= α[v] and A |= β[v]
A |= (α↔ β)[v] iff ṽ(α) = ṽ(β)

A |= ∃xiφ[v] iff for some assignment
v⋆ agreeing with v

except possibly at xi
A |= φ[v⋆]

Proof: easy
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9.5 Example

Let f be a binary function symbol, let ‘L = {f}’

(need only list non-logical symbols), consider

A = 〈Z; ·〉 as L-structure, let v be the assign-

ment v(xi) = i(∈ Z) for i = 0,1, . . ., and let

φ = ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

Then

A |= φ[v]
iff for all v⋆ with v⋆(xi) = i for i 6= 0

A |= ∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)[v

⋆]
iff for all v⋆⋆ with v⋆⋆(xi) = i for i 6= 0,1

A |= (f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)[v

⋆⋆]
iff for all v⋆⋆ with v⋆⋆(xi) = i for i 6= 0,1

v⋆⋆(x0) · v
⋆⋆(x2) = v⋆⋆(x1) · v

⋆⋆(x2)
implies v⋆⋆(x0) = v⋆⋆(x1)

iff for all a, b ∈ Z, a · 2 = b · 2 implies a = b,
which is true.

So A |= φ[v]
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However, if v′(xi) = 0 for all i, then would have

finished with

... iff for all a, b ∈ Z, a · 0 = b · 0 implies a = b,

which is false. So A 6|= φ[v′].

9.6 Example

Let P be a unary predicate symbol, L = {P},

A an L-structure, v any assignment in A, and

φ = ((∀x0P (x0) → P (x1)).

Then A |= φ[v].

Proof:

A |= φ[v] iff

A |= ∀x0P (x0)[v] implies A |= P (x1)[v].

Now suppose A |= ∀x0P (x0)[v]. Then for all

v⋆ which agree with v except possibly at x0,

P (x0)[v
⋆].

In particular, for v⋆(xi) =

{
v(xi) if i 6= 0
v(x1) if i = 0

we have PA(v⋆(x0)), and hence PA(v(x1)),

i.e. P (x1)[v].
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9.7 Definition

Let L be any first-order language.

• An L-formula φ is logically valid (‘|= φ’) if

A |= φ[v] for all L-structures A and for all

assignments v in A.

• φ ∈ Form(L) is satisfiable if A |= φ[v] for

some L-structure A and for some assign-

ment v in A.

• For Γ ⊆ Form(L) and φ ∈ Form(L), φ is a

logical consequence of Γ (‘Γ |= φ’) if for

all L-structures A and for all assignments

v in A with A |= ψ[v] for all ψ ∈ Γ, also

A |= φ[v].

• φ, ψ ∈ Form(L) are logically equivalent if

{φ} |= ψ and {ψ} |= φ.

Example: |= φ for φ from 9.6
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Note:

The symbol ‘|=’ is now used in two ways:

‘Γ |= φ’ means: φ a logical consequence of Γ

‘A |= φ[v]’ means: φ is satisfied in the L-structure

A under the assignment v

This shouldn’t give rise to confusion, since it

will always be clear from the context whether

there is a set Γ of L-formulas or an L-structure

A in front of ‘|=’.
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10. Free and bound variables

Recall Example 9.5: The formula

φ = ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

• is true in 〈Z; ·〉 under any assignment v with

v(x2) = 2

• but false when v(x2) = 0.

Whether or not A |= φ[v] only depends on

v(x2), not on v(x0) or v(x1).

The reason is: the variables x0, x1 are covered

by a quantifier (∀); we say they are “bound”

(definition to follow!).

But the occurrence of x2 is not “bound” by a

quanitifer, but rather is “free”.
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10.1 Definition

Let L be a first-order language, φ an L-formula,

and x ∈ {x0, x1, . . .} a variable occurring in φ.

The occurrence of x in φ is free, if

(i) φ is atomic, or

(ii) φ = ¬ψ resp. φ = (χ → ρ) and x occurs

free in ψ resp. in χ or ρ, or

(iii) φ = ∀xiψ, x occurs free in ψ, and x 6= xi.

Every other occurrence of x in φ is called bound.

In particular, if x = xi and φ = ∀xiψ, then x is

bound in φ.

10.2 Example

(∃x0P ( x0︸︷︷︸

b

, x1︸︷︷︸

f

)∨∀x1(P ( x0︸︷︷︸

f

, x1︸︷︷︸

b

) → ∃x0P ( x0︸︷︷︸

b

, x1︸︷︷︸

b

)))
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10.3 Lemma

Let L be a language, let A be an L-structure,

let v, v′ be assignments in A and let φ be an

L-formula.

Suppose v(xi) = v′(xi) for every variable xi
with a free occurrence in φ.

Then

A |= φ[v] iff A |= φ[v′].

Proof:

For φ atomic: exercise

Now use induction on the length of φ:

- φ = ¬ψ and φ = (χ→ ρ): easy

- φ = ∀xiψ:

IH: Assume the Lemma holds for ψ.

Let

Free (φ):={xj | xj occurs free in φ}

Free (ψ):={xj | xj occurs free in ψ}
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⇒ xi 6∈ Free(φ) and

Free(φ) = Free(ψ) \ {xi}

Assume A |= ∀xiψ[v] (⋆)

to show: for any v⋆ agreeing with v′ except

possibly at xi: A |= ψ[v⋆].

for all xj ∈ Free(φ):

v⋆(xj) = v(xj) = v′(xj).

Let v+(xj) :=

{

v(xj) if j 6= i

v⋆(xj) if j = i

Then v+ agrees with v except possibly at xi.

Hence, by (⋆), A |= ψ[v+].

But v⋆(xj) = v+(xj) for all xj ∈ Free(ψ).

⇒ by IH, A |= ψ[v⋆] �
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10.4 Corollary

Let L be a language, α, β ∈ Form(L). Assume

the variable xi has no free occurrence in α.

Then

|= (∀xi(α→ β) → (α→ ∀xiβ)).

Proof:

Let A be an L-structure and let v be an as-

signment in A such that

A |= ∀xi(α→ β)[v] (⋆)

to show: A |= (α→ ∀xiβ)[v].

So suppose A |= α[v]

to show: A |= ∀xiβ[v].

So let v⋆ be an assignment agreeing with v

except possibly at xi.

We want: A |= β[v⋆]

xi is not free in α ⇒10.3 A |= α[v⋆]

(⋆) ⇒ A |= (α→ β)[v⋆]

⇒ A |= β[v⋆] �
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10.5 Definition

A formula φ without free (occurrence of) vari-

ables is called a statement or a sentence.

If φ is a sentence then, for any L-structure A,

whether or not A |= φ[v] does not depend on

the assignment v.

So we write A |= φ if A |= φ[v] for some/all v.

Say: φ is true in A, or A is a model of φ.

( ‘Model Theory’)
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10.6 Example

Let L = {f, c} be a language, where f is a

binary function symbol, and c is a constant

symbol.

Consider the sentences (we write x, y, z instead

of x0, x1, x2)

φ1 : ∀x∀y∀zf(x, f(y, z))
.
= f(f(x, y), z)

φ2 : ∀x∃y(f(x, y)
.
= c ∧ f(y, x)

.
= c)

φ3 : ∀x(f(x, c)
.
= x ∧ f(c, x)

.
= x)

and let φ = φ1 ∧ φ2 ∧ φ3.

Let A = 〈A; ◦; e〉 be an L-structure (i.e. ◦ is an

interpretation of f , and e is an interpretation

of c.)

Then A |= φ iff A is a group.

Lecture 10 - 7/12



10.7 Example

Let L = {E} be a language with E = P
(2)
i a

binary relation symbol. Consider

χ1 : ∀xE(x, x)
χ2 : ∀x∀y(E(x, y) ↔ E(y, x))
χ3 : ∀x∀y∀z(E(x, y) → (E(y, z) → E(x, z)))

Then for any L-structure 〈A;R〉:

〈A;R〉 |= (χ1 ∧ χ2 ∧ χ3) iff

R is an equivalence relation on A.

Note: Most mathematical concepts can be

captured by first-order formulas.
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10.8 Example

Let P be a 2-place (i.e. binary) predicate sym-

bol, L := {P}. Consider the statements

ψ1 : ∀x∀y(P (x, y) ∨· x
.
= y ∨· P (y, x))

(∨· means either - or exclusively:
(α ∨· β) :⇔ ((α ∨ β) ∧ ¬(α ∧ β)))

ψ2 : ∀x∀y∀z((P (x, y) ∧ P (y, z)) → P (x, z))
ψ3 : ∀x∀z(P (x, z) → ∃y(P (x, y) ∧ P (y, z)))
ψ4 : ∀y∃x∃z(P (x, y) ∧ P (y, z))

These are the axioms for a dense linear order

without endpoints. Let ψ = (ψ1 ∧ . . . ∧ ψ4).

Then 〈Q;<〉 |= ψ and 〈R;<〉 |= ψ.

But: The ‘(Dedekind) Completeness’ of 〈R;<〉

is not captured in 1st-order terms using the

langauge L, but rather in 2nd-order terms, where

also quantification over subsets, rather than

only over elements of R is used:

∀A,B ⊆ R((A << B) → ∃c ∈ R(A ≤≤ {c} ≤≤ B),

where A << B means that a < b for every a ∈ A

and every b ∈ B etc.
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10.9 Example: ACF0: Algebraically closed

fields of characteristic zero.

L := {+,×,0,1}, language of rings

Commutative, associative, distributive laws; the

existence of multiplicative inverse of non-zero

elements;

Characteristic 0: 1 + 1 6= 0,1+ 1+ 1 6= 0, . . .

For each n = 2,3,4, . . . a sentence ψn asserting

that every non-constant polynomial has a root.

(This is automatic for n = 1).

∀a0 . . .∀an[¬an = 0 → ∃x(anxn+ . . .+ a0 = 0)]

This set of axioms is complete and decidable.

(Complete: every sentence φ, either φ or ¬φ is

a logical consequence of the axioms.)

Examples 10.7, 10.8, 10.9 are of the type which

will be explored in Part C Model Theory.
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10.10 Example: Peano Arithmetic (PA)

This is historically a very important system,

studied in Part C Godel’s Incompleteness Thms.

It is not complete and not decidable.

L := {0,+,×, s}

The unary s is the “successor function” it is

injective and its range if everything except 0.

Axioms for +,×

Induction: for every unary formula φ the axiom

[φ(0) ∧ ∀x(φ(x) → φ(s(x)))] → ∀yφ(y)

This is weaker than a second order system pro-

posed by Peano which states induction for ev-

ery subset of N.
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10.11 Example: Set Theory

Several ways of axiomatizing a system for Set

Theory, in which all (?) mathematics can be

carried out.

The most popular system ZFC is introduced

in B1.2 Set Theory, and more formally in Part

C Axiomatic Set Theory. ZFC has:

L := {∈}, a binary relation for set membership

Axioms: existence of empty set, pairs, unions,

power set,.....

10.12 Example: Second order logic

Lose completeness, compactness.
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11. Substitution

Goal: Given φ ∈ Form(L) and xi ∈ Free(φ)

- want to replace xi by a term t to obtain a

new formula φ[t/xi]

(read: ‘φ with xi replaced by t’)

- should have {∀xiφ} |= φ[t/xi]

11.1 Example

Let L = {f ; c} and let φ be ∃x1f(x1)
.
= x0.

⇒ Free(φ) = {x0} and

‘∀x0φ’, i.e. ‘∀x0∃x1f(x1)
.
= x0’

says that f is onto.

- if t = c then φ[t/x0] is ∃x1f(x1)
.
= c

- but if t = x1 then φ[t/x0] is ∃x1f(x1)
.
= x1,

stating the existence of a fixed point of f —

no good: there are fixed point free onto func-

tions, e.g. ‘+1’ on Z.

Problem: the variable x1 in t has become un-

intentionally bound in the substitution.

To avoid this we define:
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11.2 Definition

For φ ∈ Form(L), for any variable xi (not nec-

essarily in Free(φ)) and for any term t ∈ Term(L),

define the phrase

‘t is free for xi in φ’

and the substitution

φ[t/xi] (‘φ with xi replaced by t’)

recursively as follows:

(i) if φ is atomic, then t is free for xi in φ

and φ[t/xi] is the result of replacing every oc-

currence of xi in φ by t.

(ii) if φ = ¬ψ then

t is free for xi in φ iff t is free for xi in ψ.

In this case, φ[t/xi] = ¬α, where α = ψ[t/xi].
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(iii) if φ = (ψ → χ) then

t is free for xi in φ iff

t is free for xi in both ψ and χ.
In this case, φ[t/xi] = (α→ β),
where α = ψ[t/xi] and β = χ[t/xi].

(iv) if φ = ∀xjψ then

t is free for xi in φ

if i = j or

if i 6= j, and xj does not occur in t,
and t is free for xi in ψ.

In this case φ[t/xi] =

{
φ if i = j
∀xjα if i 6= j,

where α = ψ[t/xi].

11.3 Example

Let L = {f, g} and let φ be ∃x1f(x1)
.
= x0.

⇒ g(x0, x2) is free for x0 in φ
and φ[g(x0, x2)/x0] is ∃x1f(x1)

.
= g(x0, x2),

but g(x0, x1) is not free for x0 in φ.
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11.4 Lemma

Let L be a first-order language, A an L-structure,

φ ∈ Form(L) and t a term free for the variable

xi in φ. Let v be an assignment in A and define

v′(xj) :=

{
v(xj) if j 6= i
ṽ(t) if j = i

Then A |= φ[v′] iff A |= φ[t/xi][v].

Proof: 1. For u ∈ Term(L) let

u[t/xi] := the term obtained by replacing

each occurrence of xi in u by t

⇒ ṽ′(u) = ṽ(u[t/xi])

(Exercise)
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2. If φ is atomic, say

φ = P (t1, . . . , tk) for some P = P
(k)
i ∈ Pred(L)

then

A |= φ[v′]

iff PA(ṽ′(t1), . . . , ṽ′(tk)) by def. ‘|=’

iff PA(ṽ(t1[t/xi]), . . . , ṽ(tk[t/xi])) by 1.

iff A |= P (t1[t/xi], . . . , tk[t/xi])[v] by def. ‘|=’

iff A |= φ[t/xi][v]

Similarly, if φ is t1
.
= t2.
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3. Induction step

The cases ¬ and → are routine.

❀ the only interesting case is φ = ∀xjψ.

IH: Lemma holds for ψ.

Case 1: j = i

⇒ φ[t/xi] = φ by Definition 11.2.(iv)

xi = xj 6∈ Free(φ)

⇒ v and v′ agree on all x ∈ Free(φ)

⇒ by Lemma 10.3,

A |= φ[v′] iff A |= φ[v] iff A |= φ[t/xi][v]

Case 2: j 6= i

‘⇒’: Suppose A |= ∀xjψ[v
′] (⋆)

to show: A |= ∀xjψ[t/xi][v]

Lecture 11 - 6/8



So let v⋆ agree with v except possibly at xj.

to show: A |= ψ[t/xi][v
⋆]

Define v⋆′(xk) :=

{
v⋆(xk) if k 6= i

ṽ⋆(t) if k = i
t is free for xi in φ ⇒

t is free for xi in ψ and t does not contain xj.

IH ⇒ enough to show: A |= ψ[v⋆′]

v⋆′ and v′ agree except possibly at xi and xj.

But, in fact, they do agree at xi:

v′(xi) = ṽ(t) = ṽ⋆(t) = v⋆′(xi),

where the 2nd equality holds, because v and

v⋆ agree except possibly at xi, which does not

occur in t.

So v⋆′ and v′ agree except possibly at xj
⇒ by (⋆), A |= ψ[v⋆′] as required.

‘⇐’: similar. ✷
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11.5 Corollary

For any φ ∈ Form(L), t ∈ Term(L),

|= (∀xiφ→ φ[t/xi]),

provided that the term t is free for xi in φ.

Proof: Let A be an L-structure and let v be

an assignment in A.

Assume A |= ∀xiφ[v] (⋆)

to show: A |= φ[t/xi][v]

By Lemma 11.4, it suffices to show A |= φ[v′],

where

v′(xj) :=

{
v(xj) for j 6= i
ṽ(t) for j = i.

Since v and v′ agree except possibly at xi, this

follows from (⋆).

✷
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12. A formal system for Predicate
Calculus

12.1 Definition

Associate to each first-order language L the

formal system K(L) with the following axioms

and rules (for any α, β, γ ∈ Form(L), t ∈ Term(L)):

Axioms

A1 (α→ (β → α))

A2 ((α→ (β → γ)) → ((α→ β) → (α→ γ)))

A3 ((¬β → ¬α) → (α→ β))

A4 (∀xiα→ α[t/xi]), where t is free for xi in α

A5 (∀xi(α → β) → (α → ∀xiβ)), provided that

xi 6∈ Free(α)

A6 ∀xi xi
.
= xi

A7 (xi
.
= xj → (φ → φ′)), where φ is atomic

and φ′ is obtained from φ by replacing some

(not necessarily all) occurrences of xi in φ by

xj

Lecture 12 - 1/8



Rules

MP (Modus Ponens) From α and (α → β)

infer β

∀ (Generalisation) From α infer ∀xiα

Thinning Rule see 12.6

φ is a theorem of K(L) (write ‘⊢ φ’) if there is

a sequence (a derivation, or a proof) φ1, . . . , φn

of L-formulas with φn = φ such that each φi
either is an axiom or is obtained from earlier

φj’s by MP or ∀.

For Γ ⊆ Form(L), φ ∈ Form(L) define simi-

larly that φ is derivable in K(L) from the

hypotheses Γ (write ‘Γ ⊢ φ’), except that the

φi’s may now also be formulas from Γ,

but we make the restriction that ∀ may only

be used for variables xi not occurring free in

any formula in Γ.
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12.2 Soundness Theorem for Pred. Calc.

If Γ ⊢ φ then Γ |= φ.

Proof: Induction on length of derivation

Clear that A1, A2, and A3 are logically valid.

So are A4 and A5 by Cor. 11.5 resp. Cor.

10.4.

Also A6 is logically valid: easy exercise.

A7: Let A be an L-structure and let v be any

assignment in A. Suppose that

A |= xi
.
= xj[v] and A |= φ[v].

We want to show that A |= φ′[v] (with φ atomic).

Now v(xi) = v(xj)

⇒ ṽ(t′) = ṽ(t) for any term t′ obtained from t

by replacing some of the xi by xj
(easy induction on terms)
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If φ is P (t1, . . . , tk) then φ′ is P (t′1, . . . , t
′
k).

A |= φ[v] iff PA(ṽ(t1), . . . , ṽ(tk))
iff PA(ṽ(t′1), . . . , ṽ(t

′
k))

iff A |= P (t′1, . . . , t
′
k)[v]

iff A |= φ′[v] as required

Similarly, if φ is t1
.
= t2.

So now all axioms are logically valid.

MP is sound: for any A, v

A |= α [v] and A |= (α→ β)[v] imply A |= β[v]

Generalisation: IH for any A, v
if A |= ψ[v] for all ψ ∈ Γ then A |= α[v] (⋆)

to show: A |= ∀xiα[v] for such A, v.

So let v⋆ agree with v except possibly at xi.
xi 6∈ Free(ψ) for any ψ ∈ Γ

⇒ A |= ψ[v⋆] for all ψ ∈ Γ (by Lemma 10.3)

⇒ A |= α[v⋆] (by (⋆))
⇒ A |= ∀xiα[v] as required. ✷
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12.3 Deduction Theorem for Pred. Calc.

If Γ ∪ {ψ} ⊢ φ then Γ ⊢ (ψ → φ).

Proof: same as for prop. calc. (Theorem 6.6)

with one more step in the induction (on the

length of the derivation).

IH: Γ ⊢ (ψ → φj)

to show: Γ ⊢ (ψ → ∀xiφj),

where generalisation (∀) has been used to infer

∀xiφj under the hypotheses Γ ∪ {ψ}

⇒ xi 6∈ Free(γ) for any γ ∈ Γ and xi 6∈ Free(ψ)

⇒ by IH and ∀: Γ ⊢ ∀xi(ψ → φj)

A5 ⊢ (∀xi(ψ → φj) → (ψ → ∀xiφj)), since xi 6∈

Free(ψ)

⇒ by MP, Γ ⊢ (ψ → ∀xiφj) as required.

✷
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12.4 Tautologies

If A is a tautology of the Propositional Calculus

with propositional variables among p0, . . . , pn,

and if ψ0, . . . , ψn ∈ Form(L) are formulas of

Predicate Calculus, then the formula A′ ob-

tained from A by replacing each pi by ψi is a

tautology of L:

Since A1, A2, A3 and MP are in K(L), one

also has ⊢ A′ in K(L).

May use the tautologies in derivations in K(L).
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12.5 Example Swapping variables

Suppose xj does not occur in φ.

Then {∀xiφ} ⊢ ∀xjφ[xj/xi]

1 ∀xiφ [∈ Γ]

2 (∀xiφ→ φ[xj/xi]) [A4]

3 φ[xj/xi] [MP 1,2]

4 ∀xjφ[xj/xi] [∀]

where ∀ may be applied in line 4, since xj does

not occur in φ.

This proof would not work if

Γ = {∀xiφ, xj
.
= xj} (say). Hence need (besides

MP and (∀))

12.6 Thinning Rule

If Γ ⊢ φ and Γ′ ⊇ Γ then Γ′ ⊢ φ.
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12.7 Example

(∃xiφ→ ψ) ⊢ ∀xi(φ→ ψ),

where xi 6∈ Free(ψ).

Proof: Let Γ = {(∃xiφ→ ψ),¬ψ}

1 (¬∀xi¬φ→ ψ) [∈ Γ]

2 ((¬∀xi¬φ→ ψ) → (¬ψ → ∀xi¬φ)) [taut.]

3 (¬ψ → ∀xi¬φ) [MP 1,2]

4 ¬ψ [∈ Γ]

5 ∀xi¬φ [MP 3,4]

6 (∀xi¬φ→ ¬φ) [A4]

7 ¬φ [MP 5,6]

Note that in line 6, xi is free for xi in φ.

Hence Γ ⊢ ¬φ. So

(∃xiφ→ ψ) ⊢ (¬ψ → ¬φ) [DT]

(∃xiφ→ ψ) ⊢ (φ→ ψ) [A3, MP]

(∃xiφ→ ψ) ⊢ ∀xi(φ→ ψ) [∀]

✷
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13. The Completeness Theorem for
Predicate Calculus

13.1 Theorem (Gödel)

Let Γ ⊆ Form(L), φ ∈ Form(L).

If Γ |= φ then Γ ⊢ φ.

Two additional assumptions:

• Assume all γ ∈ Γ and φ are sentences – the

Theorem is true more generally, but the

proof is much harder and applications are

typically to sentences.

• Further assumption (for the start – later

we do the general case): no
.
=-symbol in

any formula of Γ or in φ.
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First Step

Call ∆ ⊆ Sent(L) consistent if for no sentence

ψ, both ∆ ⊢ ψ and ∆ ⊢ ¬ψ.

13.2. To prove 13.1 it is enough to prove:

(⋆) Every consistent set of sentences has a

model.

i.e. ∆ consistent ⇒

there is an L-structure A such that

A |= δ for every δ ∈ ∆.

Proof of 13.2: Assume Γ |= φ and assume (⋆).

⇒ Γ ∪ {¬φ} has no model

⇒(⋆) Γ ∪ {¬φ} is not consistent

⇒ Γ ∪ {¬φ} ⊢ ψ and Γ ∪ {¬φ} ⊢ ¬ψ for some ψ

⇒DT Γ ⊢ (¬φ → ψ) and Γ ⊢ (¬φ → ¬ψ) for

some ψ

But Γ ⊢ ((¬φ→ ψ) → ((¬φ→ ¬ψ) → φ)) [taut.]

⇒ Γ ⊢ φ [2xMP] ✷13.2
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Second Step

We shall need an infinite supply of constant

symbols.

To do this, let φ′ be the formula obtained by

replacing every occurrence of cn by c2n.

For ∆ ⊆ Form(L) let

∆′ := {φ′ | φ ∈ ∆}

Then

13.3 Lemma

(a) ∆ consistent ⇒ ∆′ consistent

(b) ∆′ has a model ⇒ ∆ has a model.

Proof: Easy exercise. ✷
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Third Step

• ∆ ⊆ Sent(L) is called maximal consistent

if ∆ is consistent, and for any ψ ∈ Sent(L):

∆ ⊢ ψ or ∆ ⊢ ¬ψ.

• ∆ ⊆ Sent(L) is called witnessing if for all

ψ ∈ Form(L) with Free(ψ) ⊆ {xi} and with

∆ ⊢ ∃xiψ there is some cj ∈ Const(L) such

that ∆ ⊢ ψ[cj/xi]

13.4 To prove CT it is enough to show:

Every maximal consistent witnessing set ∆ of

sentences has a model.
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For the proof of 13.4 we need 2 Lemmas:

13.5 Lemma

If ∆ ⊆ Sent(L) is consistent, then for any sen-

tence ψ, either ∆ ∪ {ψ} or ∆ ∪ {¬ψ} is consis-

tent.

Proof: Exercise – as for Propositional Calcu-

lus. ✷.

13.6 Lemma

Assume ∆ ⊆ Sent(L) is consistent, ∃xiψ ∈

Sent(L), ∆ ⊢ ∃xiψ, and cj is not occurring

in ψ nor in any δ ∈ ∆.

Then ∆ ∪ {ψ[cj/xi]} is consistent.
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Proof:

Assume, for a contradiction, that there is some

χ ∈ Sent(L) such that

∆ ∪ {ψ[cj/xi]} ⊢ χ and ∆ ∪ {ψ[cj/xi]} ⊢ ¬χ.

May assume that cj does not occur in χ

(since ⊢ (χ→ (¬χ→ θ)) for any sentence θ).

By DT, ∆ ⊢ (ψ[cj/xi] → χ)

and ∆ ⊢ (ψ[cj/xi] → ¬χ).

Then also

∆ ⊢ (ψ → χ) and ∆ ⊢ (ψ → ¬χ)

(Exercise Sheet ♯ 4 (2)(ii))
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By ∀, ∆ ⊢ ∀xi(ψ → χ)

and ∆ ⊢ ∀xi(ψ → ¬χ)

(note that xi 6∈ Free(δ) for any δ ∈ ∆ ⊆ Sent(L)).

Now: ⊢ (∀xi(A→ B) → (∃xiA→ B))

for any A,B ∈ Form(L) with xi 6∈ Free(B)

(Exercise Sheet ♯ 4, (2)(i))

MP ⇒ ∆ ⊢ (∃xiψ → χ)

and ∆ ⊢ (∃xiψ → ¬χ)

(χ,¬χ ∈ Sent(L), so xi 6∈ Free(χ))

By hypothesis, ∆ ⊢ ∃xiψ

⇒ by MP, ∆ ⊢ χ and ∆ ⊢ ¬χ

contradicting consistency of ∆.

✷13.6
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Proof of 13.4:

Let ∆ be any consistent set of sentences.

to show: ∆ has a model assuming that any

maximal consistent, witnessing set of sentences

has a model.

By 13.3(a), ∆′ is consistent and does not con-

tain any c2m+1.

Let φ1, φ2, φ3, . . . be an enumeration of

Sent(L′ ∪ {c1, c3, c5, . . .}).

Construct finite sets ⊆ Sent(L′∪{c1, c3, c5, . . .})

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . .

such that ∆′ ∪ Γn is consistent for each n ≥ 0

as follows:
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Let Γ0 := ∅.

If Γn has been constructed let

Γn+1/2 :=











Γn ∪ {φn+1} if ∆′ ∪ Γn ∪ {φn+1}
is consistent

Γn ∪ {¬φn+1} otherwise

⇒ Γn+1/2 is consistent (Lemma 13.5)

Now, if ¬φn+1 ∈ Γn+1/2 or if φn+1 is not of

the form ∃xiψ, let Γn+1 := Γn+1/2.

If not, i.e. if φn+1 = ∃xiψ ∈ Γn+1/2 then

∆′ ∪ Γn+1/2 ⊢ ∃xiψ.

Choose m large enough such that c2m+1 does

not occur in any formula in ∆′ ∪ Γn+1/2 ∪ {ψ}

(possible since Γn+1/2∪{ψ} is finite and ∆′ has

only even constants).
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Let Γn+1 := Γn+1/2 ∪ {ψ[c2m+1/xi]}

⇒ by Lemma 13.6, Γn+1 is consistent.

Let Γ := ∆′ ∪
⋃

n≥0Γn.

⇒ Γ is maximal consistent

(as in Propositional Calculus)

and Γ is witnessing (by construction).

By assumption, Γ has a model, say A.

⇒ in particular, Γ |= δ for any δ ∈ ∆′

⇒ by Lemma 13.3(b), ∆ has a model

✷13.4

So to prove CT it remains to show:

Every maximal consistent witnessing set ∆ of

sentences has a model.
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13.7 Theorem (CT after reduction 13.4)

Let Γ be a maximal consistent witnessing set

of sentences not containing a
.
=-symbol.

Then Γ has a model.

Proof:

Let A := {t ∈ Term(L) | t is closed}

(recall: t closed means no variables in t).

A will be the domain of our model A of Γ

(A is called term model).

For P = P
(k)
n ∈ Pred(L) resp. f = f

(k)
n ∈

Fct(L) resp. c = cn ∈ Const(L) define the

interpretations PA resp. fA resp. cA by

PA(t1, . . . , tk) holds :⇔ Γ ⊢ P (t1, . . . , tk)
fA(t1, . . . , tk) := f(t1, . . . , tk)

cA := c
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to show: A |= Γ

(i.e. A |= Γ[v] for some/all assignments v in

A: note that Γ contains only sentences).

Let v be an assignment in A,

say v(xi) =: si ∈ A for i = 0,1,2, . . ..

Claim 1: For any u ∈ Term(L): ṽ(u) = u[~s/~x]
(:= the closed term obtained by replacing each

xi in u by si)

Proof: by induction on u
- u = xi ⇒
ṽ(u) = v(xi) = si = xi[si/xi] = u[~s/~x]
- u = c ∈ Const(L) ⇒
ṽ(u[~s/~x]) = ṽ(u) = v(c) = cA
- u = f(t1, . . . , tk) ⇒

ṽ(u) := fA(ṽ(t1), . . . , ṽ(tk))
= fA(t1[~s/~x], . . . , tk[~s/~x]) by IH

= f(t1[~s/~x], . . . , tk[~s/~x]) by def. offA
= f(t1, . . . , tk)[~s/~x] by def. of subst.

= u[~s/~x] ✷Claim 1
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Claim 2: For any φ ∈ Form(L) without
.
=-

symbol:
A |= φ[v] iff Γ ⊢ φ[~s/~x],

where φ[~s/~x] := the sentence obtained by re-

placing each free occurrence of xi by si: note

that si is free for xi in φ because si is a closed

term.

Proof: by induction on φ

φ atomic, i.e.

φ = P (t1, . . . , tk) for some P = P
(k)
n ∈ Pred(L)

Then

A |= φ[v]
iff PA(ṽ(t1), . . . , ṽ(tk)) [def. of ‘|=’]

iff PA(t1[~s/~x], . . . , tk[~s/~x]) [Claim 1]

iff Γ ⊢ P (t1[~s/~x], . . . , tk[~s/~x]) [def. of PA]

iff Γ ⊢ P (t1, . . . , tk)[~s/~x] [def. subst.]

iff Γ ⊢ φ[~s/~x]

Note that Claim 2 might be false for formulas

of the form t1
.
= t2: might have Γ ⊢ c0

.
= c1,

but c0, c1 are distinct elements in A.
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Induction Step

A |= ¬φ[v]
iff not A |= φ[v] [def. of ‘|=’]

iff not Γ ⊢ φ[~s/~x] [IH]

iff Γ ⊢ ¬φ[~s/~x] [Γ max. cons.]

A |= (φ→ ψ)[v]
iff not A |= φ[v] or A |= ψ[v] [def. ‘|=’]

iff not Γ ⊢ φ[~s/~x] or Γ ⊢ ψ[~s/~x] [IH]

iff Γ ⊢ ¬φ[~s/~x] or Γ ⊢ ψ[~s/~x] [Γ max.]

iff Γ ⊢ (¬φ[~s/~x] ∨ ψ[~s/~x]) [def. ‘⊢’]

iff Γ ⊢ (φ[~s/~x] → ψ[~s/~x]) [taut.]

iff Γ ⊢ (φ→ ψ)[~s/~x] [def. subst.]

∀-step ‘⇒’

Suppose A |= ∀xiφ[v] (⋆)

but not Γ ⊢ (∀xiφ)[~s/~x]

⇒ Γ ⊢ (¬∀xiφ)[~s/~x] (Γ max.)

⇒ Γ ⊢ (∃xi¬φ)[~s/~x] (Exercise)
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Now let φ′ be the result of substituting each

free occurrence of xj in φ by sj for all j 6= i.

⇒ (∃xi¬φ)[~s/~x] = ∃xi¬φ
′

⇒ Γ ⊢ ∃xi¬φ
′

Γ witnessing ⇒

Γ ⊢ ¬φ′[c/xi] for some c ∈ Const(L)

Define

v⋆(xj) :=

{
v(xj) if j 6= i
c if j = i

and s⋆j :=

{
sj if j 6= i
c if j = i

⇒ ¬φ′[c/xi] = ¬φ[~s⋆/~x]

⇒ Γ ⊢ ¬φ[~s⋆/~x]

⇒ Γ |= ¬φ[v⋆] [IH]

But, by (⋆), A |= φ[v⋆]: contradiction.
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∀-step ‘⇐’:

Suppose A 6|= ∀xiφ[v]

⇒ for some v⋆ agreeing with v except possibly

at xi

A |= ¬φ[v⋆]

Let s⋆j :=

{
sj for j 6= i

v⋆(xj) for j = i

IH ⇒ Γ ⊢ ¬φ[~s⋆/~x],

i.e. Γ ⊢ ¬φ′[s⋆i /xi],

where φ′ is the result of substituting each free

occurrence of xj in φ by sj for all j 6= i

⇒ Γ ⊢ ∃xi¬φ
′

(Exercise:

χ ∈ Form(L), Free(χ) ⊆ {xi}, s a closed term

⇒ ⊢ (χ[s/xi] → ∃xiχ))
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So

Γ ⊢ ¬∀xi¬¬φ
′

⇒ Γ ⊢ ¬∀xiφ
′

⇒ Γ ⊢ (¬∀xiφ)[~s/~x]

⇒ Γ 6⊢ (∀xiφ)[~s/~x]

✷Claim 2

Now choose any φ ∈ Γ ⊆ Sent(L)

⇒ φ[~s/~x] = φ

⇒ A |= φ[v], i.e. A |= φ [Claim 2]

⇒ A |= Γ

✷13.7
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13.8 Modification required for
.
=–symbol

Define an equivalence relation E on A by

t1Et2 iff Γ ⊢ t1
.
= t2

(easy to check: this is an equivalence relation,

e.g. transitivity = (1)(ii) of sheet ♯ 4).

Let A/E be the set of equivalence classes t/E

(with t ∈ A).

Define L-structure A/E with domain A/E by

PA/E(t1/E, . . . , tk/E) :⇔ Γ ⊢ P (t1, . . . , tk)

fA/E(t1/E, . . . , tk/E) := fA(t1, . . . , tk)

cA/E := cA/E

check: independence of representatitves of t/E

(this is the purpose of Axiom A7).

Rest of the proof is much the same as before.

✷13.1
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14. Applications of Gödel’s
Completeness Theorem

14.1 Compactness Theorem for Predicate

Calculus

Let L be a first-order language

and let Γ ⊆ Sent(L).

Then Γ has a model iff every finite subset of

Γ has a model.

Proof: as for Propositional Calculus – Exercise

sheet ♯ 4, (5)(ii).

14.2 Example

Let Γ ⊆ Sent(L). Assume that for every N ≥ 1,

Γ has a model whose domain has at least N

elements.

Then Γ has a model with an infinite domain.
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Proof:

For each n ≥ 2 let χn be the sentence

∃x1∃x2 · · · ∃xn
∧

1≤i<j≤n
¬xi

.
= xj

⇒ for any L-structure A = 〈A; . . .〉,

A |= χn iff ♯A ≥ n

Let Γ′ := Γ ∪ {χn | n ≥ 1}.

If Γ0 ⊆ Γ′ is finite,

let N be maximal with χN ∈ Γ0.

By hypothesis, Γ ∪ {χN} has a model.

⇒ Γ0 has a model

(note that ⊢ χN → χN−1 → χN−2 → . . .)

⇒ By the Compactness Theorem 14.1,

Γ′ has a model, say A = 〈A; . . .〉

⇒ A |= χn for all n ⇒ ♯A = ∞ ✷
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14.3 The Löwenheim-Skolem Theorem

Let Γ ⊆ Sent(L) be consistent.

Then Γ has a model with a countable domain.

Proof:

This follows from the proof of the Complete-

ness Theorem:

The term model constructed there was count-

able, because there are only countably many

closed terms.

✷

14.4 Definition

(i) Let A be an L-structure.
Then the L-theory of A is

Th(A) := {φ ∈ Sent(L) | A |= φ},
the set of all L-sentences true in A.

Note: Th(A) is maximal consistent.

(ii) If A and B are L-structures with Th(A) =

Th(B) then A and B are elementarily equiv-

alent (in symbols ‘A ≡ B’).
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14.5 Remark

Let Γ ⊆Sent(L) be any set of L-sentences.
Then TFAE:

(i) Γ is strongly maximal consistent (i.e. for

each L-sentence φ, φ ∈ Γ of ¬φ ∈ Γ)

(ii) Γ =Th(A) for some L-structure A

Proof:

(i) ⇒ (ii): Completeness Theorem

Rest: clear. ✷

Note that Γ is maximal consistent if and only

if Γ has models, and, for any two models A
and B, A ≡ B.
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A worked example:

Dense linear orderings without endpoints

Let L = {<} be the language with just one

binary predicate symbol ‘<’,

and let Γ be the L-theory of dense linear or-

derings without endpoints (cf. Example 10.8)

consisting of the axioms ψ1, . . . , ψ4:

ψ1 : ∀x∀y((x < y ∨ x .
= y ∨ y < x)

∧¬((x < y ∧ x .
= y) ∨ (x < y ∧ y < x)))

ψ2 : ∀x∀y∀z(x < y ∧ y < z) → x < z)
ψ3 : ∀x∀z(x < z → ∃y(x < y ∧ y < z))
ψ4 : ∀y∃x∃z(x < y ∧ y < z)

14.6 (a) Examples

Q, R, ]0,1[, R \ {0}, [
√
2, π] ∩Q, ]0,1[ ∪ ]2,3[,

or Z×R with lexicographic ordering:

(a, b) < (c, d) ⇔ a < c or (a = c & b < d)

(b) Counterexamples [0,1], Z, {0}, R\]0,1[
or R× Z with lexicographic ordering
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14.7 Theorem

Let Γ be the theory of dense linear orderings

without endpoints, and let A = 〈A;<A〉 and

B = 〈B;<B〉 be two countable models.

Then A and B are isomorphic, i.e. there is an

order preserving bijection between A and B.

Proof: Note: A and B are infinite.

Choose an enumeration (no repeats)

A = {a1, a2, a3, . . .}
B = {b1, b2, b3, . . .}

Define φ : A→ B recursively s.t. for all n:

(⋆n) for all i, j ≤ n : φ(ai) <B φ(aj) ⇔ ai <A aj

Suppose φ has been defined on {a1, . . . , an}
satisfying (⋆n).
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Let φ(an+1) = bm,

where m > 1 is minimal s.t.

for all i ≤ n : bm <B φ(ai) ⇔ an+1 <A ai,

i.e. the position of φ(an+1)

relative to φ(a1), . . . , φ(an)

is the same as that of an+1

relative to a1, . . . , an

(possible as A,B |= Γ).

⇒ (⋆n+1) holds for a1, . . . , an+1

⇒ φ is injective

And φ is surjective, by minimality of m. ✷
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14.8 Corollary

Γ is maximal consistent

Proof:

to show: Th(A) =Th(B) for any A,B |= Γ

(by Remark 14.5)

By the Theorem of Löwenheim-Skolem (14.3),

Th(A) and Th(B) have countable models,

say A0 and B0.

⇒ Th(A0) =Th(A) and Th(B0) =Th(B)

Theorem 14.7 ⇒ A0 and B0 are isomorphic

⇒ Th(A0) =Th(B0)

⇒ Th(A) =Th(B) ✷
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Recall that R is Dedekind complete:

for any subsets A,B ⊆ R with A‘<’B

(i.e. a < b for any a ∈ A, b ∈ B)

there is γ ∈ R with A‘≤’{γ}‘≤’B.

Q is not Dedekind complete:

take A = {x ∈ Q | x < π}
B = {x ∈ Q | π < x}

14.9 Corollary

Th(〈Q;<〉) =Th(〈R;<〉)

In particular, the Dedekind completness of R

is not a first-order property,

i.e. there is no ∆ ⊆ Sent(L) such that for all

L-structures 〈A;<〉,

〈A;<〉 |= ∆ iff 〈A;<〉 is Dedekind complete.
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15. Normal Forms

(a) Prenex Normal Form

A formula is in prenex normal form (PNF)

if it has the form

Q1xi1Q2xi2 · · ·Qrxir ψ,

where each Qi is a quantifier

(i.e. either ∀ or ∃), and where

ψ is a formula containing no quantifiers.

15.1 PNF-Theorem

Every φ ∈ Form(L) is logically equivalent to an

L-formula in PNF.

Proof: Induction on φ

(working in the language with ∀, ∃,¬,∧):

φ atomic: OK
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φ = ¬ψ,

say φ↔ ¬Q1xi1Q2xi2 · · ·Qrxir χ

Then φ↔ Q−
1 xi1Q

−
2 xi2 · · ·Q

−
r xir ¬χ,

where Q− = ∃ if Q = ∀, and Q− = ∀ if Q = ∃

φ = (χ ∧ ρ) with χ, ρ in PNF

Note that ⊢ (∀xjψ[xj/xi] ↔ ∀xiψ),

provided xj does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ

do not occur in ρ and vice versa.

But then, e.g. (∀xα ∧ ∃yβ) ↔ ∀x∃y(α ∧ β) etc.

✷
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(b) Skolem Normal Form

Recall: In the proof of CT, we introduced wit-

nessing new constants for existential formulas

such that

∃xφ(x) is satisfiable iff φ(c) is satisfiable.

This way an ∃x in front of a formula could be

removed at the expense of a new constant.

Now we remove existential quantifiers ‘inside’ a

formula at the expense of extra function sym-

bols:

15.2 Observation:

Let φ = φ(x, y) be an L-formula with x, y ∈Free(φ).

Let f be a new unary function symbol (not in

L).
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Then ∀x∃yφ(x, y) is satisfiable iff ∀xφ(x, f(x))

is satisfiable.

(f is called a Skolem function for φ.)

Proof: ‘⇐’: clear

‘⇒’: Let A be an L-structure with A |= ∀x∃yφ(x, y)

⇒ for every a ∈ A there is some b ∈ A with

φ(a, b)

Interpret f by a function assigning to each a ∈

A one such b

(this uses the Axiom of Choice!). ✷

Example: R |= ∀x∃y(x
.
= y2∨ x

.
= −y2) – here

f(x) =
√

| x | will do.

Lecture 16 - 4/6



15.3 Theorem

For every L-formula φ

there is a formula φ⋆

(with new constant and function symbols)

having only universal quantifiers in its PNF

such that

φ is satisfiable iff φ⋆ is.

More precisely,

any L-structure A

can be made into a structure A⋆

interpreting the new constant and function sym-

bols

such that

A |= φ iff A⋆ |= φ⋆.
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