Oxford, MT2017

B1.1 Logic

Jonathan Pila

Slides by J. Koenigsmann with some small additions; further reference see: D. Goldrei, "Propositional and Predicate Calculus: A Model of Argument", Springer.

Introduction

1. What is mathematical logic about?

- provide a uniform, unambiguous language for mathematics
- make precise what a proof is
- explain and guarantee exactness, rigor and certainty in mathematics
- establish the foundations of mathematics

$$
\begin{gathered}
\text { B1 (Foundations) } \\
=\text { B1.1 (Logic) }+ \text { B1.2 (Set theory) }
\end{gathered}
$$

N.B.: Course does not teach you to think logically, but it explores what it means to think logically

2. Historical motivation

- 19th cent.:
need for conceptual foundation in analysis:
what is the correct notion of infinity, infinitesimal, limit, ...
- attempts to formalize mathematics:
- Frege's Begriffsschrift
- Cantor's naive set theory:
a set is any collection of objects
- led to Russell's paradox:
consider the set $R:=\{S$ set $\mid S \notin S\}$
$R \in R \Rightarrow R \notin R$ contradiction
$R \notin R \Rightarrow R \in R$ contradiction
\leadsto fundamental crisis in the foundations of mathematics

3. Hilbert's Program

1. find a uniform (formal) language for all mathematics
2. find a complete system of inference rules/ deduction rules
3. find a complete system of mathematical axioms
4. prove that the system $1 .+2 .+3$. is consistent, i.e. does not lead to contradictions

* complete: every mathematical sentence can be proved or disproved using 2. and 3.
* 1., 2. and 3. should be finitary/effective/computable/algorithmic so, e.g., in 3. you can't take as axioms
the system of all true sentences in mathematics
* idea: any piece of information is of finte length

4. Solutions to Hilbert's program

Step 1. is possible in the framework of
ZF $=$ Zermelo-Fraenkel set theory or
$\mathbf{Z F C}=\mathbf{Z F}+$ Axiom of Choice
(this is an empirical fact)
~B1.2 Set Theory HT 2017

Step 2. is possible in the framework of

1st-order logic:

Gödel's Completeness Theorem
\sim B1.1 Logic - this course

Step 3. is not possible (\sim C1.2):
Gödel's 1st Incompleteness Theorem: there is no effective axiomatization of arithmetic

Step 4. is not possible (\sim C1.2):
Gödel's 2nd Incompleteness Theorem, (but..)

Lecture 1 - 4/6

5. Decidability

Step 3. of Hilbert's program fails:
there is no effective axiomatization
for the entire body of mathematics
But: many important parts of mathematics are completely and effectively axiomatizable, they are decidable, i.e. there is an
algorithm $=$ program $=$ effective procedure deciding whether a sentence is true or false \leadsto allows proofs by computer

Example: $T h(\mathbf{C})=$ the 1st-order theory of \mathbf{C}
$=$ all algebraic properties of C :

```
Axioms \(=\) field axioms
+ all non-constant polynomials have a zero
+ the characteristic is 0
```

Every algebraic property of C follows from these axioms.
Similarly for $T h(\mathbf{R})$.
\sim C1.1 Model Theory

6. Why mathematical logic?

1. Language and deduction rules are tailored for mathematical objects and mathematical ways of reasoning
N.B.: Logic tells you what a proof is, not how to find one
2. The method is mathematical: we will develop logic as a calculus with sentences and formulas
\Rightarrow Logic is itself a mathematical discipline, not meta-mathematics or philosophy, no ontological questions like what is a number?
3. Logic has applications towards other areas of mathematics, e.g. Algebra, Topology, but also towards theoretical computer science

PART I:

 Propositional Calculus

 Propositional Calculus}

1. The language of propositional calculus

... is a very coarse language with limited expressive power
... allows you to break a complicated sentence down into its subclauses, but not any further ... will be refined in PART II Predicate Calculus, the true language of 1 st order logic ... is nevertheless well suited for entering formal logic

1.1 Propositional variables

- all mathematical disciplines use variables, e.g. x, y for real numbers or z, w for complex numbers or α, β for angles etc.
- in logic we introduce variables $p_{0}, p_{1}, p_{2}, \ldots$ for sentences (propositions)
- we don't care what these propositions say, only their logical properties count, i.e. whether they are true or false (when we use variables for real numbers, we also don't care about particular numbers)

1.2 The alphabet of propositional calculus

consists of the following symbols:
the propositional variables $p_{0}, p_{1}, \ldots, p_{n}, \ldots$
negation $\neg-$ the unary connective not
four binary connectives $\rightarrow, \wedge, \vee, \leftrightarrow$ implies, and, or and if and only if respectively
two punctuation marks (and) left parenthesis and right parenthesis

This alphabet is denoted by \mathcal{L}. Note that these are abstract symbols. Note also that we use \rightarrow, and not \Rightarrow.

1.3 Strings

- A string (from \mathcal{L})
is any finite sequence of symbols from \mathcal{L} placed one after the other - no gaps
- Examples
(i) $\rightarrow p_{17}()$
(ii) $\left(\left(p_{0} \wedge p_{1}\right) \rightarrow \neg p_{2}\right)$
(iii))) $\neg) p_{32}$
- The length of a string is the number of symbols in it.
So the strings in the examples have length 4, 10, 5 respectively.
(A propositional variable has length 1.)
- we now single out from all strings those which make grammatical sense (formulas)

1.4 Formulas

The notion of a formula of \mathcal{L} is defined (recursively) by the following rules:
I. every propositional variable is a formula
II. if the string A is a formula then so is $\neg A$
III. if the strings A and B are both formulas then so are the strings

$$
\begin{array}{ll}
(A \rightarrow B) & \text { read } A \text { implies } B \\
(A \wedge B) & \text { read } A \text { and } B \\
(A \vee B) & \text { read } A \text { or } B \\
(A \leftrightarrow B) & \text { read } A \text { if and only if } B
\end{array}
$$

IV. Nothing else is a formula,
i.e. a string ϕ is a formula if and only if ϕ can be obtained from propositional variables by finitely many applications of the formation rules II. and III.

Examples

- the string $\left(\left(p_{0} \wedge p_{1}\right) \rightarrow \neg p_{2}\right)$ is a formula (Example (ii) in 1.3) Proof:

- Parentheses are important, e.g.
($p_{0} \wedge\left(p_{1} \rightarrow \neg p_{2}\right)$) is a different formula and $p_{0} \wedge\left(p_{1} \rightarrow \neg p_{2}\right)$ is no formula at all
- the strings $\rightarrow p_{17}()$ and $\left.\left.)\right) \neg\right) p_{32}$ from Example (i) and (iii) in 1.3 are no formulas this follows from the following Lemma:

Lemma If ϕ is a formula then

- either ϕ is a propositional variable
- or the first symbol of ϕ is \neg
- or the first symbol of ϕ is (.

Proof: Induction on $n:=$ the length of ϕ :
$\mathbf{n}=1$: then ϕ is a propositional variable any formula obtained via formation rules (II. and III.) has length >1.

Suppose the lemma holds for all formulas of length $\leq n$.
Let ϕ have length $n+1$
$\Rightarrow \phi$ is not a propositional variable $(n+1 \geq 2)$
\Rightarrow either ϕ is $\neg \psi$ for some formula ψ - so ϕ begins with \neg
or ϕ is $\left(\psi_{1} \star \psi_{2}\right)$ for some $\star \in\{\rightarrow, \wedge, \vee, \leftrightarrow\}$ and some formulas ψ_{1}, ψ_{2} - so ϕ begins with (. \square

The unique readability theorem

A formula can be constructed in only one way: For each formula ϕ exactly one of the following holds
(a) ϕ is p_{i} for some unique $i \in \mathbf{N}$;
(b) ϕ is $\neg \psi$ for some unique formula ψ;
(c) ϕ is $(\psi \star \chi)$ for some unique pair of formulas ψ, χ and a unique binary connective $\star \in\{\rightarrow, \wedge, \vee, \leftrightarrow\}$.

Proof: Problem sheet $\sharp 1$.

2. Valuations

Propositional Calculus

- is designed to find the truth or falsity of a compound formula from its constituent parts
- it computes the truth values T ('true') or F ('false') of a formula ϕ, given the truth values assigned to the smallest constituent parts, i.e. the propositional variables occuring in ϕ

How this can be done is made precise in the following definition.

2.1 Definition

1. A valuation v is a function

$$
v:\left\{p_{0}, p_{1}, p_{2}, \ldots\right\} \rightarrow\{T, F\}
$$

2. Given a valuation v we extend v uniquely to a function

$$
\tilde{v}: \text { Form }(\mathcal{L}) \rightarrow\{T, F\}
$$

(Form (\mathcal{L}) denotes the set of all formulas of \mathcal{L})
defined recursively as follows:
2.(i) If ϕ is a formula of length 1 , i.e. a propositional variable, then $\widetilde{v}(\phi):=v(\phi)$.
2.(ii) If \tilde{v} is defined for all formulas of length $\leq n$, let ϕ be a formula of length $n+1(\geq 2)$.

Then, by the Unique Readability Theorem, either $\phi=\neg \psi$ for a unique ψ
or $\quad \phi=(\psi \star \chi)$ for a unique pair ψ, χ and a unique $\star \in\{\rightarrow, \wedge, \vee, \leftrightarrow\}$,
where ψ and χ are formulas of lenght $\leq n$, so $\widetilde{v}(\psi)$ and $\widetilde{v}(\chi)$ are already defined.

Truth Tables

Define $\widetilde{v}(\phi)$ by the following truth tables:
Negation

$$
\begin{array}{c||c}
\psi & \neg \psi \\
\hline \hline T & F \\
\hline F & T
\end{array}
$$

i.e. if $\widetilde{v}(\psi)=T$ then $\widetilde{v}(\neg \psi)=F$ and if $\widetilde{v}(\psi)=F$ then $\widetilde{v}(\neg \psi)=T$

Binary Connectives

ψ	χ	$\psi \rightarrow \chi$	$\psi \wedge \chi$	$\psi \vee \chi$	$\psi \leftrightarrow \chi$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	T	F	T	F
F	F	T	F	F	T

so, e.g., if $\widetilde{v}(\psi)=F$ and $\widetilde{v}(\chi)=T$
then $\widetilde{v}(\psi \vee \chi)=T$ etc.

Remark: These truth tables correspond roughly to our ordinary use of the words 'not', 'if then', 'and', 'or' and 'if and only if', except, perhaps, the truth table for implication (\rightarrow).

2.2 Example

Construct the full truth table for the formula

$$
\phi:=\left(\left(p_{0} \vee p_{1}\right) \rightarrow \neg\left(p_{1} \wedge p_{2}\right)\right)
$$

$\widetilde{v}(\phi)$ only depends on $v\left(p_{0}\right), v\left(p_{1}\right)$ and $v\left(p_{2}\right)$.

p_{o}	p_{1}	$p_{2} \\|\left(p_{0} \vee p_{1}\right)$	$\left(p_{1} \wedge p_{2}\right)$	$\neg\left(p_{1} \wedge p_{2}\right)$	ϕ	
T	T	T	T	T	F	F
T	T	F	T	F	T	T
T	F	T	T	F	T	T
T	F	F	T	F	T	T
F	T	T	T	T	F	F
F	T	F	T	F	T	T
F	F	T	F	F	T	T
F	F	F	F	F	T	T

2.3 Example Truth table for

$$
\phi:=\left(\left(p_{0} \rightarrow p_{1}\right) \rightarrow\left(\neg p_{1} \rightarrow \neg p_{0}\right)\right)
$$

p_{0}	p_{1}	$\left(p_{0} \rightarrow p_{1}\right)$	$\neg p_{1}$	$\neg p_{0}$	$\left(\neg p_{1} \rightarrow \neg p_{0}\right)$	ϕ
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

3. Logical Validity

3.1 Definition

- A valuation v satisfies a formula ϕ if $\widetilde{v}(\phi)=T$
- If a formula ϕ is satisfied by every valuation then ϕ is logically valid or a tautology (e.g. Example 2.3, not Example 2.2) Notation: $=\phi$
- If a formula ϕ is satisfied by some valuation then ϕ is satisfiable (e.g. Example 2.2)
- A formula ϕ is a logical consequence of a formula ψ if, for every valuation v :

$$
\text { if } \widetilde{v}(\psi)=T \text { then } \widetilde{v}(\phi)=T
$$

Notation: $\psi \vDash \phi$
3.2 Lemma $\psi \models \phi$ if and only if $\models(\psi \rightarrow \phi)$.

Proof: ' \Rightarrow ': Assume $\psi=\phi$.
Let v be any valuation.

- If $\widetilde{v}(\psi)=T$ then (by def.) $\widetilde{v}(\phi)=T$,
so $\widetilde{v}((\psi \rightarrow \phi))=T$ by $\mathrm{tt} \rightarrow$.
('tt ${ }^{\text {' }}$ stands for the truth table of the connective $*$)
- If $\widetilde{v}(\psi)=F$ then $\widetilde{v}((\psi \rightarrow \phi))=T$ by $\mathrm{tt} \rightarrow$.

Thus, for every valuation $v, \widetilde{v}((\psi \rightarrow \phi))=T$, so $\vDash(\psi \rightarrow \phi)$.
' \Leftarrow ': Conversely, suppose $\models(\psi \rightarrow \phi)$.
Let v be any valuation s.t. $\widetilde{v}(\psi)=T$.
Since $\tilde{v}((\psi \rightarrow \phi))=T$, also $\widetilde{v}(\phi)=T$ by $\mathrm{tt} \rightarrow$. Hence $\psi \models \phi$.

More generally, we make the following
3.3 Definition Let Γ be any (possibly infinite) set of formulas and let ϕ be any formula.
Then ϕ is a logical consequence of Γ
if, for every valuation v :

$$
\text { if } \widetilde{v}(\psi)=T \text { for all } \psi \in \Gamma \text { then } \widetilde{v}(\phi)=T
$$

Notation: $\Gamma \models \phi$

3.4 Lemma

$\Gamma \cup\{\psi\} \models \phi$ if and only if $\Gamma \models(\psi \rightarrow \phi)$.

Proof: similar to the proof of previous lemma 3.2 - Exercise.

3.5 Example

$\vDash\left(\left(p_{0} \rightarrow p_{1}\right) \rightarrow\left(\neg p_{1} \rightarrow \neg p_{0}\right)\right) \quad$ (cf. Ex. 2.3
Hence $\left(p_{0} \rightarrow p_{1}\right) \models\left(\neg p_{1} \rightarrow \neg p_{0}\right) \quad$ by 3.2
Hence $\left\{\left(p_{0} \rightarrow p_{1}\right), \neg p_{1}\right\} \vDash \neg p_{0} \quad$ by 3.4

3.6 Example

$$
\phi \models(\psi \rightarrow \phi)
$$

Proof:
If $\widetilde{v}(\phi)=T$ then, by $\mathrm{tt} \rightarrow, \widetilde{v}((\psi \rightarrow \phi))=T$ (no matter what $\widetilde{v}(\psi)$ is).

4. Logical Equivalence

4.1 Definition

Two formulas ϕ, ψ are logically equivalent if $\phi \models \psi$ and $\psi \models \phi$,
i.e. if for every valuation $v, \widetilde{v}(\phi)=\widetilde{v}(\psi)$.

Notation: $\phi==\psi$
Exercise $\phi==\psi$ if and only if $\models(\phi \leftrightarrow \psi)$
4.2 Lemma
(i) For any formulas ϕ, ψ

$$
(\phi \vee \psi) \models=\neg(\neg \phi \wedge \neg \psi)
$$

(ii) Hence every formula is logically equivalent to one without ' \vee '.

Proof:
(i) Either use truth tables
or observe that, for any valuation v :

$$
\begin{array}{ll}
\text { iff } \begin{array}{ll}
\widetilde{v}(\neg(\neg \phi \wedge \neg \psi))=F & \\
\text { iff } \widetilde{v}(\neg \phi) \neg \psi))=T & \text { by tt } \neg \widetilde{v}(\neg \psi)=T
\end{array} & \text { by tt } \wedge \\
\text { iff } \widetilde{v}(\phi)=\widetilde{v}(\psi)=F & \text { by tt } \neg \\
\text { iff } \widetilde{v}(\phi \vee \psi)=F & \text { by tt } \vee
\end{array}
$$

(ii) Induction on the length of the formula ϕ :

Clear for lenght 1
For the induction step observe that

$$
\text { If } \psi \models==\psi^{\prime} \text { then } \neg \psi \models=\neg \psi^{\prime}
$$

and
If $\phi \models=\phi^{\prime}$ and $\psi \models==\psi^{\prime}$ then $(\phi \star \psi) \models=\left(\phi^{\prime} \star \psi^{\prime}\right)$, where \star is any binary connective.
(Use (i) if $\star=v$)

4.3 Some sloppy notation

We are only interested in formulas
up to logical equivalence:
If A, B, C are formulas then

$$
((A \vee B) \vee C) \text { and }(A \vee(B \vee C))
$$

are different formulas, but logically equivalent. So here - up to logical equivalene bracketting doesn't matter. Hence

- Write $(A \vee B \vee C)$ or even $A \vee B \vee C$ instead.
- More generally, if A_{1}, \ldots, A_{n} are formulas, write $A_{1} \vee \ldots \vee A_{n}$ or $\bigvee_{i=1}^{n} A_{i}$ for some (any) correctly bracketed version.
- Similarly $\bigwedge_{i=1}^{n} A_{i}$.

4.4 Some logical equivalences

Let A, B, A_{i} be formulas. Then

1. $\neg(A \vee B) \models=(\neg A \wedge \neg B)$

So, inductively,

$$
\neg \bigvee_{i=1}^{n} A_{i} \models==\bigwedge_{i=1}^{n} \neg A_{i}
$$

This is called De Morgan's Laws.
2. like 1. with \vee and \wedge swapped everywhere
3. $(A \rightarrow B) \vDash=(\neg A \vee B)$
4. $(A \vee B) \models=((A \rightarrow B) \rightarrow B)$
5. $(A \leftrightarrow B) \models=((A \rightarrow B) \wedge(B \rightarrow A))$

5. Adequacy of the Connectives

The connectives \neg (unary) and $\rightarrow, \wedge, \vee, \leftrightarrow$ (binary) are the logical part of our language for propositional calculus.

Question:

- Do we have enough connectives?
- Can we express everything which is logically conceivable using only these connectives?
- Does our language \mathcal{L} recover all potential truth tables?

Answer: yes
Lecture 4-5/12

5.1 Definition

(i) We denote by V_{n} the set of all functions

$$
v:\left\{p_{0}, \ldots, p_{n-1}\right\} \rightarrow\{T, F\}
$$

i.e. of all partial valuations, only assigning values to the first n propositional variables. Hence $\sharp V_{n}=2^{n}$.
(ii) An n-ary truth function is a function

$$
J: V_{n} \rightarrow\{T, F\}
$$

There are precisely $2^{2^{n}}$ such functions.
(iii) If a formula $\phi \in \operatorname{Form}(\mathcal{L})$ contains only prop. variables from the set $\left\{p_{0}, \ldots, p_{n-1}\right\}$ - write ' $\phi \in \operatorname{Form}_{n}(\mathcal{L})$ ' then ϕ determines the truth function

$$
\begin{aligned}
J_{\phi}: V_{n} & \rightarrow\{T, F\} \\
v & \mapsto \widetilde{v}(\phi)
\end{aligned}
$$

i.e. J_{ϕ} is given by the truth table for ϕ.

5.2 Theorem

Our language \mathcal{L} is adequate,
i.e. for every n and every truth function
$J: V_{n} \rightarrow\{T, F\}$ there is some $\phi \in \operatorname{Form}_{n}(\mathcal{L})$
with $J_{\phi}=J$.
(In fact, we shall only use the connectives \neg, \wedge, \vee.)

Proof: Let $J: V_{n} \rightarrow\{T, F\}$ be any n-ary truth function.

If $J(v)=F$ for all $v \in V_{n}$ take $\phi:=\left(p_{0} \wedge \neg p_{0}\right)$.
Then, for all $v \in V_{n}: J_{\phi}(v)=\widetilde{v}(\phi)=F=J(v)$.

Otherwise let $U:=\left\{v \in V_{n} \mid J(v)=T\right\} \neq \emptyset$.
For each $v \in U$ and each $i<n$ define the formula

$$
\psi_{i}^{v}:=\left\{\begin{array}{rll}
p_{i} & \text { if } & v\left(p_{i}\right)=T \\
\neg p_{i} & \text { if } & v\left(p_{i}\right)=F
\end{array}\right.
$$

and let $\psi^{v}:=\bigwedge_{i=0}^{n-1} \psi_{i}^{v}$.

Then for any valuation $w \in V_{n}$ one has the following equivalence (\star):

$$
\begin{array}{lll}
\widetilde{w}\left(\psi^{v}\right)=T & \text { iff } \begin{array}{ll}
\text { for all } i<n: & (\text { by tt } \wedge) \\
& \text { iff }\left(\psi_{i}^{v}\right)=T
\end{array} & \text { (by def. of } \left.\psi_{i}^{v}\right)
\end{array}
$$

Now define $\phi:=\bigvee_{v \in U} \psi^{v}$.

Then for any valuation $w \in V_{n}$:

$$
\begin{array}{ll}
\tilde{w}(\phi)=T & \text { iff for some } v \in U: \widetilde{w}\left(\psi^{v}\right)=T \\
& \text { iff for some } v \in U: w=v \\
& \text { iff } w \in U \\
& \text { iff } J(w)=T
\end{array}
$$

Hence for all $w \in V_{n}: J_{\phi}(w)=J(w)$, i.e. $J_{\phi}=$ J.

5.3 Definition

(i) A formula which is a conjunction of p_{i} 's and $\neg p_{i}$'s is called a conjunctive clause - e.g. ψ^{v} in the proof of 5.2
(ii) A formula which is a disjunction of conjunctive clauses is said to be in disjunctive normal form ('dnf')

- e.g. ϕ in the proof of 5.2

So we have, in fact, proved the following Corollary:

5.4 Corollary - 'The dnf-Theorem'

For any truth function

$$
J: V_{n} \rightarrow\{T, F\}
$$

there is a formula $\phi \in \operatorname{Form}_{n}(\mathcal{L})$ in dnf with $J_{\phi}=J$.

In particular, every formula is logically equivalent to one in dnf.

5.5 Definition

Suppose S is a set of (truth-functional) connectives - so each $s \in S$ is given by some truth table.
(i) Write $\mathcal{L}[S]$ for the language with connectives S instead of $\{\neg, \rightarrow, \wedge, \vee, \leftrightarrow\}$ and define Form $(\mathcal{L}[S])$ and Form $n(\mathcal{L}[S])$ accordingly.
(ii) We say that S is adequate (or truth functionally complete) if for all $n \geq 1$ and for all n-ary truth functions J there is some $\phi \in \operatorname{Form}_{n}(\mathcal{L}[S])$ with $J_{\phi}=J$.

5.6 Examples

1. $S=\{\neg, \wedge, \vee\}$ is adequate (Theorem 5.2)
2. Hence, by Lemma 4.2(i), $S=\{\neg, \wedge\}$ is adequate:

$$
\phi \vee \psi \models=\neg(\neg \phi \wedge \neg \psi)
$$

Similarly, $S=\{\neg, \vee\}$ is adequate:

$$
\phi \wedge \psi \models=\neg(\neg \phi \vee \neg \psi)
$$

3. Can express \vee in terms of \rightarrow, so $\{\neg, \rightarrow\}$ is adequate (Problem sheet $\sharp 2$).
4. $S=\{\vee, \wedge, \rightarrow\}$ is not adequate, because any $\phi \in \operatorname{Form}(\mathcal{L}[S])$ has T in the top row of tt ϕ, so no such ϕ gives $J_{\phi}=J_{\neg p_{0}}$.
5. There are precisely two binary connectives, say \uparrow and \downarrow such that $S=\{\uparrow\}$ and $S=\{\downarrow\}$ are adequate.

6. A deductive system for propositional calculus

- We have indtroduced 'logical consequence': $\Gamma \vDash \phi-$ whenever (each formula of) Γ is true so is ϕ
- But we don't know yet how to give an actual proof of ϕ from the hypotheses Γ.
- A proof should be a finite sequence $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ of statements such that
- either $\phi_{i} \in \Gamma$
- or ϕ_{i} is some axiom (which should clearly be true)
- or ϕ_{i} should follow from previous ϕ_{j} 's by some rule of inference
$-\mathrm{AND} \phi=\phi_{n}$

6.1 Definition

Let $\mathcal{L}_{0}:=\mathcal{L}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the system L_{0} consists of the following axioms and rules:

Axioms

An axiom of L_{0} is any formula of the following form ($\alpha, \beta, \gamma \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$):

A1 $(\alpha \rightarrow(\beta \rightarrow \alpha))$

A2 $(((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)))$

A3 $((\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta))$

Rules of inference

Only one: modus ponens
(for any $\alpha, \beta \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$)
MP From α and $(\alpha \rightarrow \beta)$ infer β.

6.2 Definition

For any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ we say that α is deducible (or provable) from the hypotheses Γ if there is a finite sequence $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$ such that for each $i=1, \ldots, m$ either
(a) α_{i} is an axiom, or
(b) $\alpha_{i} \in \Gamma$, or
(c) there are $j<k<i$ such that α_{i} follows from α_{j}, α_{k} by MP,
i.e. $\alpha_{j}=\left(\alpha_{k} \rightarrow \alpha_{i}\right)$ or $\alpha_{k}=\left(\alpha_{j} \rightarrow \alpha_{i}\right)$

AND
(d) $\alpha_{m}=\alpha$.

The sequence $\alpha_{1}, \ldots, \alpha_{m}$ is then called a proof or deduction or derivation of α from Γ.

Write 「 $\vdash \alpha$.

If $\Gamma=\emptyset$ write $\vdash \alpha$ and say that α is a theorem (of the system L_{0}).
6.3 Example For any $\phi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$

$$
(\phi \rightarrow \phi)
$$

is a theorem of L_{0}.
Proof:

$$
\begin{aligned}
& \alpha_{1}(\phi \rightarrow(\phi \rightarrow \phi)) \\
& \\
& \quad[\mathrm{A} 1 \text { with } \alpha=\beta=\phi] \\
& \alpha_{2}(\phi \rightarrow((\phi \rightarrow \phi) \rightarrow \phi)) \\
& \\
& {[\mathrm{A} 1 \text { with } \alpha=\phi, \beta=(\phi \rightarrow \phi)]} \\
& \alpha_{3}((\phi \rightarrow((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow \\
& \quad \rightarrow((\phi \rightarrow(\phi \rightarrow \phi)) \rightarrow(\phi \rightarrow \phi))) \\
& \quad[\mathrm{A} 2 \text { with } \alpha=\phi, \beta=(\phi \rightarrow \phi), \gamma=\phi] \\
& \alpha_{4}((\phi \rightarrow(\phi \rightarrow \phi)) \rightarrow(\phi \rightarrow \phi)) \\
& \\
& \quad\left[\mathrm{MP} \alpha_{2}, \alpha_{3}\right] \\
& \alpha_{5}(\phi \rightarrow \phi) \\
& \quad\left[\mathrm{MP} \alpha_{1}, \alpha_{4}\right]
\end{aligned}
$$

Thus, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{5}$ is a deduction of $(\phi \rightarrow \phi)$ in L_{0}.

6.4 Example

For any $\phi, \psi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\{\phi, \neg \phi\} \vdash \psi
$$

Proof:
$\alpha_{1}(\neg \phi \rightarrow(\neg \psi \rightarrow \neg \phi))$
[A1 with $\alpha=\neg \phi, \beta=\neg \psi$]
$\alpha_{2} \neg \phi[\in \Gamma]$
$\alpha_{3}(\neg \psi \rightarrow \neg \phi)\left[\mathrm{MP} \alpha_{1}, \alpha_{2}\right]$
$\alpha_{4}((\neg \psi \rightarrow \neg \phi) \rightarrow(\phi \rightarrow \psi))$
[A3 with $\alpha=\phi, \beta=\psi$]
$\alpha_{5}(\phi \rightarrow \psi)\left[\mathrm{MP} \alpha_{3}, \alpha_{4}\right]$
$\alpha_{6} \phi[\in \Gamma]$
$\alpha_{7} \psi\left[\right.$ MP $\left.\alpha_{5}, \alpha_{6}\right]$

6.5 The Soundness Theorem for L_{0}

L_{0} is sound, i.e. for any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and for any $\alpha \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\text { if } \Gamma \vdash \alpha \text { then } \Gamma \models \alpha \text {. }
$$

In particular, any theorem of L_{0} is a tautology.

Proof:
Assume $\Gamma \vdash \alpha$ and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}=\alpha$ be a deduction of α in L_{0}.
Let v be any valuation such that $\widetilde{v}(\phi)=T$ for all $\phi \in \Gamma$.

We have to show that $\widetilde{v}(\alpha)=T$.

We show by induction on $i \leq m$ that

$$
\tilde{v}\left(\alpha_{1}\right)=\ldots=\widetilde{v}\left(\alpha_{i}\right)=T \quad(\star)
$$

$\mathbf{i}=1$

either α_{1} is an axiom, so $\widetilde{v}\left(\alpha_{1}\right)=T$ or $\alpha_{1} \in \Gamma$, so, by hypothesis, $\tilde{v}\left(\alpha_{1}\right)=T$.

Induction step

Suppose (\star) is true for some $i<m$.
Consider α_{i+1}.
Either α_{i+1} is an axiom or $\alpha_{i+1} \in \Gamma$, so $\widetilde{v}\left(\alpha_{i+1}\right)=T$ as above,
or else there are $j \neq k<i+1$ such that $\alpha_{j}=\left(\alpha_{k} \rightarrow \alpha_{i+1}\right)$.

By induction hypothesis

$$
\widetilde{v}\left(\alpha_{k}\right)=\widetilde{v}\left(\alpha_{j}\right)=\widetilde{v}\left(\left(\alpha_{k} \rightarrow \alpha_{i+1}\right)\right)=T .
$$

But then, by tt $\rightarrow \widetilde{v}\left(\alpha_{i+1}\right)=T$
(since $T \rightarrow F$ is F).

For the proof of the converse

Completeness Theorem

$$
\text { If } \Gamma \models \alpha \text { then }\ulcorner\vdash \alpha \text {. }
$$

we first prove

6.6 The Deduction Theorem for L_{0}

For any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and for any $\alpha, \beta \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\text { if } \Gamma \cup\{\alpha\} \vdash \beta \text { then } \Gamma \vdash(\alpha \rightarrow \beta) \text {. }
$$

6.6 The Deduction Theorem for L_{0}

For any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and for any $\alpha, \beta \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\text { if } \Gamma \cup\{\alpha\} \vdash \beta \text { then } \Gamma \vdash(\alpha \rightarrow \beta) \text {. }
$$

Proof:

We prove by induction on m :
if $\alpha_{1}, \ldots, \alpha_{m}$ is derivable in L_{0}
from the hypotheses $\Gamma \cup\{\alpha\}$
then for all $i \leq m$
$\left(\alpha \rightarrow \alpha_{i}\right)$ is derivable in L_{0}
from the hypotheses Γ.
$m=1$

Either α_{1} is an Axiom or $\alpha_{1} \in \Gamma \cup\{\alpha\}$.

Case 1: α_{1} is an Axiom
Then
$1 \begin{array}{ll}1 & \alpha_{1} \\ \text { [Axiom] }\end{array}$
$2\left(\alpha_{1} \rightarrow\left(\alpha \rightarrow \alpha_{1}\right)\right) \quad$ [Instance of A1]
$3\left(\alpha \rightarrow \alpha_{1}\right)$
[MP 1,2]
is a derivation of ($\alpha \rightarrow \alpha_{1}$) from hypotheses \emptyset.

Note that if $\Delta \vdash \psi$ and $\Delta \subseteq \Delta^{\prime}$, then obviously $\Delta^{\prime} \vdash \psi$.

Thus $\left(\alpha \rightarrow \alpha_{1}\right)$ is derivable in L_{0} from hypotheses Γ.

Case 2: $\alpha_{1} \in \Gamma \cup\{\alpha\}$
If $\alpha_{1} \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma^{\prime}$).

If $\alpha_{1}=\alpha$, then, by Example 6.3, $\vdash\left(\alpha \rightarrow \alpha_{1}\right)$, hence $\Gamma \vdash\left(\alpha \rightarrow \alpha_{1}\right)$.

Induction Step

IH: Suppose result is true for derivations of length $\leq m$.

Let $\alpha_{1}, \ldots, \alpha_{m+1}$ be a derivation in L_{0} from $\Gamma \cup\{\alpha\}$.

Then either α_{m+1} is an axiom or $\alpha_{m+1} \in \Gamma \cup\{\alpha\}-$ in these cases proceed as above, even without IH.

Or α_{m+1} is obtained by MP from some earlier α_{j}, α_{k}, i.e. there are $j, k<m+1$ such that $\alpha_{j}=\left(\alpha_{k} \rightarrow \alpha_{m+1}\right)$.

By IH, we have

$$
\begin{array}{cl}
& \Gamma \vdash\left(\alpha \rightarrow \alpha_{k}\right) \\
\text { and } & \Gamma \vdash\left(\alpha \rightarrow \alpha_{j}\right), \\
\text { so } & \Gamma \vdash\left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m+1}\right)\right)
\end{array}
$$

Let $\beta_{1}, \ldots, \beta_{r}$ be a derivation in L_{0} of $\left(\alpha \rightarrow \alpha_{k}\right)=\beta_{r}$ from 「
and let $\gamma_{1}, \ldots, \gamma_{s}$ be a derivation in L_{0} of $\left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m+1}\right)\right)=\gamma_{s}$ from Γ.

Then

$$
\begin{array}{cll}
1 & \beta_{1} & \\
\vdots & \vdots & \\
r-1 & \beta_{r-1} \\
r & \left(\alpha \rightarrow \alpha_{k}\right) & \\
r+1 & \gamma_{1} & \\
\vdots & \vdots & \\
r+s-1 & \gamma_{s-1} \\
r+s & \left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m+1}\right)\right) & \\
r+s+1 & \left(\left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m+1}\right)\right) \rightarrow\right. & \\
& \left.\left(\left(\alpha \rightarrow \alpha_{k}\right) \rightarrow\left(\alpha \rightarrow \alpha_{m+1}\right)\right)\right) & {[\mathrm{A} 2]} \\
r+s+2 & \left(\left(\alpha \rightarrow \alpha_{k}\right) \rightarrow\left(\alpha \rightarrow \alpha_{m+1}\right)\right) & {[\mathrm{MPr} r+s, r+s+1]} \\
r+s+3 & \left(\alpha \rightarrow \alpha_{m+1}\right) & {[\mathrm{MPr} r, r+s+2]}
\end{array}
$$

is a derivation of $\left(\alpha \rightarrow \alpha_{m+1}\right)$ in L_{0} from Γ.
Lecture 6-4/8

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP.
So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise algorithm for converting any derivation showing $\Gamma \cup\{\alpha\} \vdash \beta$ into one showing $\Gamma \vdash(\alpha \rightarrow \beta)$.
- Converse is easy:

$$
\text { If }\ulcorner\vdash(\alpha \rightarrow \beta) \text { then }\ulcorner\cup\{\alpha\} \vdash \beta
$$

Proof:

$$
\begin{array}{ccl}
\vdots & \vdots & \text { derivation from 「 } \\
r & \alpha \rightarrow \beta & \\
r+1 & \alpha & {[\in \Gamma \cup\{\alpha\}]} \\
r+2 & \beta & {[M P r, r+1]}
\end{array}
$$

6.8 Example of use of DT

If $\Gamma \vdash(\alpha \rightarrow \beta)$ and $\Gamma \vdash(\beta \rightarrow \gamma)$
then $\Gamma \vdash(\alpha \rightarrow \gamma)$.
Proof:
By the deduction theorem ('DT'), it suffices to show that $\Gamma \cup\{\alpha\} \vdash \gamma$.

$:$	\vdots	proof from 「
r	$(\alpha \xrightarrow[\rightarrow]{\rightarrow})$	
$r+1$	\vdots	
\vdots	\vdots	proof from 「
$r+s$	$(\beta \xrightarrow[\rightarrow]{\rightarrow})$	$[\in\ulcorner\cup\{\alpha\}]$
$r+s+1$	α	$[\in \cup$
$r+s+2$	β	$[M P r, r+s+1]$
$r+s+3$	γ	$[M P r+s, r+s+2]$

From now on we may treat DT as an additional inference rule in L_{0}.

6.9 Definition

The sequent calculus SQ is the system where a proof (or derivation) of $\phi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$ from $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is a finite sequence of sequents, i.e. of expressions of the form

$$
\Delta \vdash_{S Q} \psi
$$

with $\Delta \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and $\Gamma \vdash_{S Q} \phi$ as last sequent.
Sequents may be formed according to the following rules

Ass: if $\psi \in \Delta$ then infer $\Delta \vdash_{S Q} \psi$
MP: from $\Delta \vdash_{S Q} \psi$ and $\Delta^{\prime} \vdash_{S Q}(\psi \rightarrow \chi)$ infer $\Delta \cup \Delta^{\prime} \vdash_{S Q} \chi$
DT: from $\Delta \cup\{\psi\} \vdash_{S Q} \chi$ infer $\Delta \vdash_{S Q}(\psi \rightarrow \chi)$
PC: from $\Delta \cup\{\neg \psi\} \vdash_{S Q} \chi$ and $\Delta^{\prime} \cup\{\neg \psi\} \vdash_{S Q} \neg \chi$ infer $\Delta \cup \Delta^{\prime} \vdash_{S Q} \psi$
'PC' stands for proof by contradiction'
Note: no axioms.

6.10 Example of a proof in SQ

$$
\begin{array}{lll}
1 & \neg \beta \vdash_{S Q} \neg \beta & \text { [Ass] } \\
2 & (\neg \beta \rightarrow \neg \alpha) \vdash_{S Q}(\neg \beta \rightarrow \neg \alpha) & \text { [Ass] } \\
3 & (\neg \beta \rightarrow \neg \alpha), \neg \beta \vdash_{S Q} \neg \alpha & {[\mathrm{MP} \text { 1,2] }} \\
4 & \alpha, \neg \beta \vdash_{S Q} \alpha & \text { [Ass] } \\
5 & (\neg \beta \rightarrow \neg \alpha), \alpha \vdash_{S Q} \beta & \text { [PC 3,4] } \\
6 & (\neg \beta \rightarrow \neg \alpha) \vdash_{S Q}(\alpha \rightarrow \beta) & \text { [DT 5] } \\
7 \vdash_{S Q}((\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)) & \text { [DT 6] }
\end{array}
$$

So $\vdash_{S Q}$ A3.
We'd better write ' $\Gamma \vdash_{L_{0}} \phi$ ' for ' $\left\ulcorner\vdash \phi\right.$ in L_{0} '.

6.11 Theorem

L_{0} and $S Q$ are equivalent: for all Γ, ϕ

$$
\left\ulcorner\vdash \vdash_{L_{0}} \phi \text { iff } \Gamma \vdash_{S Q} \phi\right.
$$

Proof: Exercise

7．Consistency，Completeness and Compactness

7．1 Definition

Let $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ ．Γ is said to be consistent （or \mathcal{L}_{0}－consistent）if for no formula α both $\Gamma \vdash$ α and $\Gamma \vdash \neg \alpha$ ．
Otherwise Γ is inconsistent．
E．g．\emptyset is consistent：by soundness theorem， α and $\neg \alpha$ are never simultaneously true．
7．2．Lemma
$\Gamma \cup\{\neg \phi\}$ is inconsistent of $\Gamma \vdash \phi$ ．
（In part．，if $\Gamma \nvdash \phi$ then $\Gamma \cup\{\neg \phi\}$ is consistent）． Proof：＇\Leftarrow＇：

$$
\begin{aligned}
& \Gamma \vdash \phi \Rightarrow \Gamma \cup\{\neg \phi\} \vdash \phi\} \Rightarrow \Gamma \cup\{\neg \phi\} \\
& \Rightarrow \mathrm{PC} \text { 「 } \vdash_{S Q} \phi \quad \Rightarrow_{6.11} \text { 「ト } \phi
\end{aligned}
$$

7.3 Lemma

Suppose Γ is consistent and $\Gamma \vdash \phi$.
Then $\Gamma \cup\{\phi\}$ is consistent.
Proof: Suppose not, i.e. for some α

$$
\left.\begin{array}{rl}
\Gamma \cup\{\phi\} \vdash \alpha \\
\Gamma \cup\{\phi\} \vdash \neg \alpha
\end{array}\right\} \Rightarrow \begin{aligned}
& \left.\Rightarrow \mathrm{DT} \begin{array}{c}
\Gamma \vdash(\phi \rightarrow \alpha) \\
\Gamma \vdash(\phi \rightarrow \neg \alpha)
\end{array}\right\} \stackrel{\Gamma \vdash \phi}{\Rightarrow} \mathrm{MP} \\
& \\
& \Rightarrow \begin{array}{l}
\Gamma \vdash \alpha \\
\Gamma \vdash \neg \alpha
\end{array}
\end{aligned}
$$

7.4 Definition

$\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is maximal consistent if
(i) Γ is consistent, and
(ii) for every ϕ, either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.

Note: This is equivalent to saying that for every ϕ, if $\Gamma \cup\{\phi\}$ is consistent then $\Gamma \vdash \phi$. Proof: Exercise

7.5 Lemma

Suppose Γ is maximal consistent.
Then for every $\psi, \chi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$
(a) $\Gamma \vdash \neg \psi$ iff $\Gamma \nvdash \psi$
(b) $\Gamma \vdash(\psi \rightarrow \chi)$ eff either $\Gamma \vdash \neg \psi$ or $\Gamma \vdash \chi$.

Proof:
(a) ' \Rightarrow ': by consistency
' \Leftarrow ': by maximality
(b) ' \Rightarrow ': Suppose $\Gamma \nvdash \neg \psi$ and $\Gamma \nvdash \chi$

$$
\begin{aligned}
& \Rightarrow\ulcorner\vdash \psi \text { and } \Gamma \vdash \neg \chi \\
& \Gamma \vdash(\psi \rightarrow \chi) \Rightarrow_{\mathrm{MP}} \Gamma \vdash \chi
\end{aligned}
$$

' \Leftarrow ': Suppose $\Gamma \vdash \neg \psi$

$$
\begin{aligned}
& \Gamma \vdash(\neg \psi \rightarrow(\psi \rightarrow \chi)) \text { - Problems } \sharp 2,(5)(\mathrm{i}) \\
& \Rightarrow \mathrm{MP} \Gamma \vdash(\psi \rightarrow \chi)
\end{aligned}
$$

Suppose $\ulcorner\vdash \chi$
$\Gamma \vdash(\chi \rightarrow(\psi \rightarrow \chi))$ - Axiom A1
$\Rightarrow_{\mathrm{MP}} \Gamma \vdash(\psi \rightarrow \chi)$

7.6 Theorem

Suppose Γ is maximal consistent.
Then Γ is satisfiable.

Proof:

For each i, $\left\ulcorner\vdash p_{i}\right.$ or $\Gamma \vdash \neg p_{i}$ (by maximality), but not both (by consistency)

Define a valuation v by

$$
v\left(p_{i}\right)=\left\{\begin{array}{lll}
T & \text { if } \Gamma \vdash p_{i} \\
F & \text { if } & \left\ulcorner\vdash \neg p_{i}\right.
\end{array}\right.
$$

Claim: for all $\phi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\tilde{v}(\phi)=T \text { iff } \Gamma \vdash \phi
$$

Proof by induction on the length n of ϕ :

$\mathbf{n}=\mathbf{1}$:

Then $\phi=p_{i}$ for some i, and so, by def. of v,

$$
\widetilde{v}\left(p_{i}\right)=T \text { iff } \Gamma \vdash p_{i} .
$$

IH: Claim true for all $i \leq n$.
Now assume length $(\phi)=\mathrm{n}+1$
Case 1: $\phi=\neg \psi(\Rightarrow$ length $(\psi)=\mathrm{n})$

$$
\begin{array}{lll}
\widetilde{v}(\phi)=T & \text { iff } & \widetilde{v}(\psi)=F \\
& \text { iff } & \ulcorner\nvdash \psi \\
& \text { iff } & \ulcorner\vdash \neg \psi \\
& \text { iff } & \ulcorner\vdash \phi \\
& \text { IH } \\
& \text { 7.5(a) } \\
&
\end{array}
$$

Case 2: $\phi=(\psi \rightarrow \chi)$
(\Rightarrow length (ψ), length $(\chi) \leq \mathrm{n}$)

$$
\begin{aligned}
& \widetilde{v}(\phi)=T \text { iff } \widetilde{v}(\psi)=F \text { or } \widetilde{v}(\chi)=T \text { tt } \rightarrow \\
& \text { iff }\ulcorner\nvdash \psi \text { or } \Gamma \vdash \chi \\
& \text { iff } \Gamma \vdash \neg \psi \text { or } \Gamma \vdash \chi \\
& \text { 7.5(a) } \\
& \text { iff } \Gamma \vdash(\psi \rightarrow \chi) \\
& \text { 7.5(b) } \\
& \text { iff }\ulcorner\vdash \phi
\end{aligned}
$$

So $\widetilde{v}(\phi)=T$ for all $\phi \in \Gamma$, i.e. v satisfies Γ.

7.7 Theorem

Suppose Γ is consistent. Then there is a maximal consistent Γ^{\prime} such that $\Gamma \subseteq \Gamma^{\prime}$.

Proof:

Form $\left(\mathcal{L}_{0}\right)$ is countable, say

$$
\operatorname{Form}\left(\mathcal{L}_{0}\right)=\left\{\phi_{1}, \phi_{2}, \phi_{3}, \ldots\right\} .
$$

Construct consistent sets

$$
\Gamma_{0} \subseteq \Gamma_{1} \subseteq \Gamma_{2} \subseteq \ldots
$$

as follows: $\Gamma_{0}:=\Gamma$.

Having constructed Γ_{n} consistently, let

$$
\Gamma_{n+1}:= \begin{cases}\Gamma_{n} \cup\left\{\phi_{n+1}\right\} & \text { if } \quad \Gamma_{n} \vdash \phi_{n+1} \\ \Gamma_{n} \cup\left\{\neg \phi_{n+1}\right\} & \text { if } \Gamma_{n} \nvdash \phi_{n+1}\end{cases}
$$

Then Γ_{n+1} is consistent by 7.3 and 7.2.

Now let $\Gamma^{\prime}:=\bigcup_{n=0}^{\infty} \Gamma_{n}$.

Then Γ^{\prime} is consistent:

Any proof of $\Gamma^{\prime} \vdash \alpha$ and $\Gamma^{\prime} \vdash \neg \alpha$ would use only finitely many formulas from Γ^{\prime}, so for some n, $\Gamma_{n} \vdash \alpha$ and $\Gamma_{n} \vdash \neg \alpha-$ contradicting the consistency of Γ_{n}.

Finally, Γ^{\prime} is maximal (even in a stronger sense): for all n, either $\phi_{n} \in \Gamma^{\prime}$ or $\neg \phi_{n} \in \Gamma^{\prime}$.

Note that the proof does not make use of Zorn's Lemma.

7.8 Corollary

 If Γ is consistent then Γ is satisfiable.Proof: $7.6+7.7$

7.9 The Completeness Theorem

If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof:

Suppose $\Gamma \models \phi$, but $\Gamma \nvdash \phi$.
\Rightarrow by $7.2, \Gamma \cup\{\neg \phi\}$ is consistent
\Rightarrow by 7.8 , there is some valuation v such that $\widetilde{v}(\psi)=T$ for all $\psi \in \Gamma \cup\{\neg \phi\}$
$\Rightarrow \widetilde{v}(\psi)=T$ for all $\psi \in \Gamma$, but $\widetilde{v}(\phi)=F$
$\Rightarrow \Gamma \not \vDash \phi$: contradiction. \square

7.10 Corollary

(7.9 Completeness +6.5 Soundness)

$$
\ulcorner\models \phi \text { iff } \Gamma \vdash \phi
$$

7.11 The Compactness Theorem for L_{0}

$\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is satisfiable iff every finite subset of Γ is satisfiable.

Proof: ‘ \Rightarrow ': obvious -
if $\widetilde{v}(\psi)=T$ for all $\psi \in \Gamma$ then $\widetilde{v}(\psi)=T$ for all $\psi \in \Gamma^{\prime} \subseteq \Gamma$.
' \Leftarrow ':
Suppose every finite $\Gamma^{\prime} \subseteq \Gamma$ is satisfiable, but Γ is not.

Then, by 7.8, Γ is inconsistent, i.e. $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$ for some α.

But then, for some finite $\Gamma^{\prime} \subseteq \Gamma$:

$$
\Gamma^{\prime} \vdash \alpha \text { and } \Gamma^{\prime} \vdash \neg \alpha
$$

$\Rightarrow \quad \Gamma^{\prime} \models \alpha$ and $\Gamma^{\prime} \models \neg \alpha$ (by soundness)
$\Rightarrow \Gamma^{\prime}$ not satisfiable: contradiction.

PART II:
 PREDICATE CALCULUS

so far:

- logic of the connectives $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \ldots$ (as used in mathematics)
- smallest unit: propositions
- deductive calculus: checking logical validity and computing truth tables
$-->$ sound, complete, compact

now:

- look more deeply into the structure of propositions used in mathematics
- analyse grammatically correct use of functions, relations, constants, variables and quantifiers
- define logical validity in this refined language
- discover axioms and rules of inference (beyond those of propositional calculus) used in mathematical arguments
- prove: $-->$ sound, complete, compact

8. The language of (first-order) predicate calculus

The language $\mathcal{L}^{F O P C}$ consists of the following symbols:

Logical symbols

connectives: \rightarrow, \neg
quantifier: \forall ('for all')
variables: $x_{0}, x_{1}, x_{2}, \ldots$
3 punctuation marks: () ,
equality symbol: \doteq

non-logical symbols:

predicate (or relation) symbols: $P_{n}^{(k)}$ for $n \geq$ $0, k \geq 1\left(P_{n}^{(k)}\right.$ is a k-ary predicate symbol) function symbols: $f_{n}^{(k)}$ for $n \geq 0, k \geq 1$ ($f_{n}^{(k)}$ is a k-ary function symbol) constant symbols: c_{n} for $n \geq 0$

8.1 Definition

(a) The terms of $\mathcal{L}^{F O P C}$ are defined recursively as follows:
(i) Every variable is a term.
(ii) Every constant symbol is a term.
(iii) For each $n \geq 0, k \geq 1$, if t_{1}, \ldots, t_{k} are terms, so is the string

$$
f_{n}^{(k)}\left(t_{1}, \ldots, t_{k}\right)
$$

(b) An atomic formula of $\mathcal{L}^{F O P C}$ is any string of the form

$$
P_{n}^{(k)}\left(t_{1}, \ldots, t_{k}\right) \text { or } t_{1} \doteq t_{2}
$$

with $n \geq 0, k \geq 1$, and where all t_{i} are terms.
(c) The formulas of $\mathcal{L}^{F O P C}$ are defined recursively as follows:
(i) Any atomic formula is a formula
(ii) If ϕ, ψ are formulas, then so are $\neg \phi$ and ($\phi \rightarrow \psi$)
(iii) If ϕ is a formula, then for any variable x_{i} so is $\forall x_{i} \phi$

8.2 Examples

$c_{0} ; c_{3} ; x_{5} ; f_{3}^{(1)}\left(c_{2}\right) ; f_{4}^{(2)}\left(x_{1}, f_{3}^{(1)}\left(c_{2}\right)\right)$ are all terms
$f_{2}^{(3)}\left(x_{1}, x_{2}\right)$ is not a term (wrong arity)
$P_{0}^{(3)}\left(x_{4}, c_{0}, f_{3}^{(2)}\left(c_{1}, x_{2}\right)\right)$ and $f_{1}^{(2)}\left(c_{5}, c_{6}\right) \doteq x_{11}$ are atomic formulas
$f_{3}^{(1)}\left(c_{2}\right)$ is a term, but no formula
$\forall x_{1} f_{2}^{(2)}\left(x_{1}, c_{7}\right) \doteq x_{2}$ is a formula, not atomic
$\forall x_{2} P_{0}^{(1)}\left(x_{3}\right)$ is a formula

8.3 Remark

We have unique readability for terms, for atomic formulas, and for formulas.

8.4 Interpretations and logical validity for $\mathcal{L}^{F O P C}$ (Informal discussion)

(A) Consider the formula

$$
\phi_{1}: \forall x_{1} \forall x_{2}\left(x_{1} \doteq x_{2} \rightarrow f_{5}^{(1)}\left(x_{1}\right) \doteq f_{5}^{(1)}\left(x_{2}\right)\right)
$$

Given that \doteq is to be interpreted as equality, \forall as 'for all', and the $f_{n}^{(k)}$ as actual functions (in k arguments), ϕ_{1} should always be true. We shall write

$$
\models \phi_{1}
$$

and say ' ϕ_{1} is logically valid'.
(B) Consider the formula
$\phi_{2}: \forall x_{1} \forall x_{2}\left(f_{7}^{(2)}\left(x_{1}, x_{2}\right) \doteq f_{7}^{(2)}\left(x_{2}, x_{1}\right) \rightarrow x_{1} \doteq x_{2}\right)$
Then ϕ_{2} may be false or true depending on the situation:

- If we interpret $f_{7}^{(2)}$ as + on \mathbf{N}, ϕ_{2} becomes false, e.g. $1+2=2+1$, but $1 \neq 2$. So in this interpretation, ϕ_{2} is false and $\neg \phi_{2}$ is true. Write

$$
\langle\mathbf{N},+\rangle \models \neg \phi_{2}
$$

- If we interpret $f_{7}^{(2)}$ as - on \mathbf{R}, ϕ_{2} becomes true: if $x_{1}-x_{2}=x_{2}-x_{1}$, then $2 x_{1}=2 x_{2}$, and hence $x_{1}=x_{2}$.
So

$$
\langle\mathbf{R},-\rangle \models \phi_{2}
$$

8.5 Free and bound variables

(Informal discussion)
There is a further complication: Consider the formula

$$
\phi_{3}: \forall x_{0} P_{0}^{(2)}\left(x_{1}, x_{0}\right)
$$

Under the interpretation $\langle\mathbf{N}, \leq\rangle$ you cannot tell whether $\langle\mathbf{N}, \leq\rangle \models \phi_{3}$:

- if we put $x_{1}=0$ then yes
- if we put $x_{1}=2$ then no.

So it depends on the value we assign to x_{1} (like in propositional calculus: truth value of $p_{0} \wedge p_{1}$ depends on the valuation).

In ϕ_{3} we can assign a value to x_{1} because x_{1} occurs free in ϕ_{3}.

For x_{0}, however, it makes no sense to assign a particular value; because x_{0} is bound in ϕ_{3} by the quantifier $\forall x_{0}$.

9. Interpretations and Assignments

We refer to a subset $\mathcal{L} \subseteq \mathcal{L}^{F O P C}$ containing all the logical symbols, but possibly only some non-logical as a language (or first-order language).
9.1 Definition Let \mathcal{L} be a language. An interpretation of \mathcal{L} is an \mathcal{L}-structure $\mathcal{A}:=$ $\left\langle A ;\left(f_{\mathcal{A}}\right)_{f \in \operatorname{Fct}(\mathcal{L})} ;\left(P_{\mathcal{A}}\right)_{P \in \operatorname{Pred}(\mathcal{L})} ;\left(c_{\mathcal{A}}\right)_{c \in \operatorname{Const}(\mathcal{L})}\right\rangle$, i.e.

- A is a non-empty set, the domain of \mathcal{A}, - for each k-ary function symbol $f=f_{n}^{(k)} \in \mathcal{L}$, $f_{\mathcal{A}}: A^{k} \rightarrow A$ is a function
- for each k-ary predicate symbol $P=P_{n}^{(k)} \in \mathcal{L}$, $P_{\mathcal{A}}$ is a k-ary relation on A, i.e. $P_{\mathcal{A}} \subseteq A^{k}$ (write $P_{\mathcal{A}}\left(a_{1}, \ldots, a_{k}\right)$ for $\left.\left(a_{1}, \ldots, a_{k}\right) \in P_{\mathcal{A}}\right)$
- for each $c \in \operatorname{Const}(\mathcal{L}): c_{\mathcal{A}} \in A$.

9.2 Definition

Let \mathcal{L} be a language and let $\mathcal{A}=\langle A ; \ldots\rangle$ be an \mathcal{L}-structure.
(1) An assignment in \mathcal{A} is a function

$$
v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A
$$

(2) v determines an assignment

$$
\tilde{v}=\widetilde{v}_{\mathcal{A}}: \operatorname{Terms}(\mathcal{L}) \rightarrow A
$$

defined recursively as follows:
(i) $\widetilde{v}\left(x_{i}\right)=v\left(x_{i}\right)$ for all $i=0,1, \ldots$
(ii) $\widetilde{v}(c)=c_{\mathcal{A}}$ for each $c \in \operatorname{Const}(\mathcal{L})$
(iii) $\widetilde{v}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=f_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right)$ for each $f=f_{n}^{(k)} \in \operatorname{Fct}(\mathcal{L})$, where the $\widetilde{v}\left(t_{i}\right)$ are already defined.
(3) v determines a valuation

$$
\tilde{v}=\tilde{v}_{\mathcal{A}}: \operatorname{Form}(\mathcal{L}) \rightarrow\{T, F\}
$$

as follows:
(i) for atomic formulas $\phi \in \operatorname{Form}(\mathcal{L})$:

- for each $P=P_{n}^{(k)} \in \operatorname{Pred}(\mathcal{L})$ and for all $t \in$ $\operatorname{Term}(\mathcal{L})$

$$
\widetilde{v}\left(P\left(t_{1}, \ldots, t_{k}\right)\right)= \begin{cases}T & \text { if } P_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right) \\ F & \text { otherwise }\end{cases}
$$

- for all $t_{1}, t_{2} \in \operatorname{Term}(\mathcal{L})$:

$$
\widetilde{v}\left(t_{1} \doteq t_{2}\right)= \begin{cases}T & \text { if } \widetilde{v}\left(t_{1}\right)=\widetilde{v}\left(t_{2}\right) \\ F & \text { otherwise }\end{cases}
$$

(ii) for arbitrary formulas $\phi \in \operatorname{Form}(\mathcal{L})$ recursively:

- $\widetilde{v}(\neg \psi)=T$ iff $\widetilde{v}(\psi)=F$
- $\widetilde{v}(\psi \rightarrow \chi)=T$ iff $\widetilde{v}(\psi)=F$ or $\widetilde{v}(\chi)=T$
- $\widetilde{v}\left(\forall x_{i} \psi\right)=T$ iff $\widetilde{v}^{\star}(\psi)=T$ for all assignments v^{\star} agreeing with v except possibly at x_{i}.

Notation: Write $\mathcal{A} \vDash \phi[v]$ for $\widetilde{v}_{\mathcal{A}}(\phi)=T$, and say ' ϕ is true in \mathcal{A} under the assignment $v=v_{\mathcal{A}} .{ }^{\prime}$

9.3 Some abbreviations

We use \ldots	as abbreviation for \ldots
$(\alpha \vee \beta)$	$((\alpha \rightarrow \beta) \rightarrow \beta)$
$(\alpha \wedge \beta)$	$\neg(\neg \alpha \vee \neg \beta)$
$(\alpha \leftrightarrow \beta)$	$((\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha))$
$\exists x_{i} \phi$	$\neg \forall x_{i} \neg \phi$

9.4 Lemma

For any \mathcal{L}-structure \mathcal{A} and any assignment v in \mathcal{A} one has

$$
\begin{array}{rll}
\mathcal{A} \models(\alpha \vee \beta)[v] & \text { iff } & \mathcal{A} \models \alpha[v] \text { or } \mathcal{A} \models \beta[v] \\
\mathcal{A} \models(\alpha \wedge \beta)[v] & \text { iff } & \mathcal{A}=\alpha[v] \text { and } \mathcal{A} \models \beta[v] \\
\mathcal{A} \models(\alpha \leftrightarrow \beta)[v] & \text { iff } & \widetilde{v}(\alpha)=\widetilde{v}(\beta) \\
\mathcal{A} \models \exists x_{i} \phi[v] & \text { iff } & \text { for some assignment } \\
& v^{\star} \text { agreeing with } v \\
& \text { except possibly at } x_{i} \\
& \mathcal{A} \models \phi\left[v^{\star}\right]
\end{array}
$$

Proof: easy

9.5 Example

Let f be a binary function symbol, let ' $\mathcal{L}=\{f\}$ ' (need only list non-logical symbols), consider $\mathcal{A}=\langle\mathbf{Z} ; \cdot\rangle$ as \mathcal{L}-structure, let v be the assignment $v\left(x_{i}\right)=i(\in \mathbf{Z})$ for $i=0,1, \ldots$, and let

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

Then

$$
\mathcal{A} \models \phi[v]
$$

iff for all v^{\star} with $v^{\star}\left(x_{i}\right)=i$ for $i \neq 0$

$$
\mathcal{A} \models \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)\left[v^{\star}\right]
$$

iff for all $v^{\star \star}$ with $v^{\star \star}\left(x_{i}\right)=i$ for $i \neq 0,1$

$$
\mathcal{A} \models\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)\left[v^{\star \star}\right]
$$

iff for all $v^{\star \star}$ with $v^{\star \star}\left(x_{i}\right)=i$ for $i \neq 0,1$ $v^{\star \star}\left(x_{0}\right) \cdot v^{\star \star}\left(x_{2}\right)=v^{\star \star}\left(x_{1}\right) \cdot v^{\star \star}\left(x_{2}\right)$ implies $v^{\star \star}\left(x_{0}\right)=v^{\star \star}\left(x_{1}\right)$
iff for all $a, b \in \mathbf{Z}, a \cdot 2=b \cdot 2$ implies $a=b$, which is true.

So $\mathcal{A} \models \phi[v]$
Lecture 9 - 5/8

However, if $v^{\prime}\left(x_{i}\right)=0$ for all i, then would have finished with
\ldots iff for all $a, b \in \mathbf{Z}, a \cdot 0=b \cdot 0$ implies $a=b$, which is false. So $\mathcal{A} \not \vDash \phi\left[v^{\prime}\right]$.

9.6 Example

Let P be a unary predicate symbol, $\mathcal{L}=\{P\}$, \mathcal{A} an \mathcal{L}-structure, v any assignment in \mathcal{A}, and

$$
\phi=\left(\left(\forall x_{0} P\left(x_{0}\right) \rightarrow P\left(x_{1}\right)\right) .\right.
$$

Then $\mathcal{A}=\phi[v]$.

Proof:

$\mathcal{A} \models \phi[v]$ iff
$\mathcal{A} \models \forall x_{0} P\left(x_{0}\right)[v]$ implies $\mathcal{A} \models P\left(x_{1}\right)[v]$.
Now suppose $\mathcal{A} \models \forall x_{0} P\left(x_{0}\right)[v]$. Then for all v^{\star} which agree with v except possibly at x_{0}, $P\left(x_{0}\right)\left[v^{\star}\right]$.
In particular, for $v^{\star}\left(x_{i}\right)= \begin{cases}v\left(x_{i}\right) & \text { if } i \neq 0 \\ v\left(x_{1}\right) & \text { if } i=0\end{cases}$ we have $P_{\mathcal{A}}\left(v^{\star}\left(x_{0}\right)\right)$, and hence $P_{\mathcal{A}}\left(v\left(x_{1}\right)\right)$, i.e. $P\left(x_{1}\right)[v]$.

9.7 Definition

Let \mathcal{L} be any first-order language.

- An \mathcal{L}-formula ϕ is logically valid (' $\models \phi^{\prime}$) if $\mathcal{A} \models \phi[v]$ for all \mathcal{L}-structures \mathcal{A} and for all assignments v in \mathcal{A}.
- $\phi \in \operatorname{Form}(\mathcal{L})$ is satisfiable if $\mathcal{A} \models \phi[v]$ for some \mathcal{L}-structure \mathcal{A} and for some assignment v in \mathcal{A}.
- For $\Gamma \subseteq \operatorname{Form}(\mathcal{L})$ and $\phi \in \operatorname{Form}(\mathcal{L}), \phi$ is a logical consequence of Γ (' $\Gamma \vDash \phi$ ') if for all \mathcal{L}-structures \mathcal{A} and for all assignments v in \mathcal{A} with $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma^{\text {, also }}$ $\mathcal{A} \vDash \phi[v]$.
- $\phi, \psi \in \operatorname{Form}(\mathcal{L})$ are logically equivalent if $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Example: $\models \phi$ for ϕ from 9.6

Note:

The symbol ' \vDash ' is now used in two ways:
‘ $\Gamma \vDash \phi$ ' means: ϕ a logical consequence of Γ
' $\mathcal{A} \models \phi[v]$ ' means: ϕ is satisfied in the \mathcal{L}-structure \mathcal{A} under the assignment v

This shouldn't give rise to confusion, since it will always be clear from the context whether there is a set Γ of \mathcal{L}-formulas or an \mathcal{L}-structure \mathcal{A} in front of ' \equiv '.

10. Free and bound variables

Recall Example 9.5: The formula

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

- is true in $\langle\mathbf{Z} ; \cdot\rangle$ under any assignment v with $v\left(x_{2}\right)=2$
- but false when $v\left(x_{2}\right)=0$.

Whether or not $\mathcal{A} \equiv \phi[v]$ only depends on $v\left(x_{2}\right)$, not on $v\left(x_{0}\right)$ or $v\left(x_{1}\right)$.

The reason is: the variables x_{0}, x_{1} are covered by a quantifier (\forall); we say they are "bound" (definition to follow!).

But the occurrence of x_{2} is not "bound" by a quanitifer, but rather is "free".

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L}-formula, and $x \in\left\{x_{0}, x_{1}, \ldots\right\}$ a variable occurring in ϕ.

The occurrence of x in ϕ is free, if
(i) ϕ is atomic, or
(ii) $\phi=\neg \psi$ resp. $\phi=(\chi \rightarrow \rho)$ and x occurs free in ψ resp. in χ or ρ, or
(iii) $\phi=\forall x_{i} \psi, x$ occurs free in ψ, and $x \neq x_{i}$.

Every other occurrence of x in ϕ is called bound.

In particular, if $x=x_{i}$ and $\phi=\forall x_{i} \psi$, then x is bound in ϕ.

10.2 Example

$(\exists x_{0} P(\underbrace{x_{0}}_{b}, \underbrace{x_{1}}_{f}) \vee \forall x_{1}(P(\underbrace{x_{0}}_{f}, \underbrace{x_{1}}_{b}) \rightarrow \exists x_{0} P(\underbrace{x_{0}}_{b}, \underbrace{x_{1}}_{b})))$

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L}-structure, let v, v^{\prime} be assignments in \mathcal{A} and let ϕ be an \mathcal{L}-formula.

Suppose $v\left(x_{i}\right)=v^{\prime}\left(x_{i}\right)$ for every variable x_{i} with a free occurrence in ϕ.

Then

$$
\mathcal{A} \models \phi[v] \text { iff } \mathcal{A} \models \phi\left[v^{\prime}\right] .
$$

Proof:
For ϕ atomic: exercise
Now use induction on the length of ϕ :

- $\phi=\neg \psi$ and $\phi=(\chi \rightarrow \rho)$: easy
- $\phi=\forall x_{i} \psi$:

IH: Assume the Lemma holds for ψ.
Let
Free $(\phi):=\left\{x_{j} \mid x_{j}\right.$ occurs free in $\left.\phi\right\}$
Free $(\psi):=\left\{x_{j} \mid x_{j}\right.$ occurs free in $\left.\psi\right\}$
$\Rightarrow x_{i} \notin \operatorname{Free}(\phi)$ and

$$
\operatorname{Free}(\phi)=\operatorname{Free}(\psi) \backslash\left\{x_{i}\right\}
$$

Assume $\mathcal{A} \models \forall x_{i} \psi[v]$
to show: for any v^{\star} agreeing with v^{\prime} except possibly at $x_{i}: \mathcal{A} \models \psi\left[v^{\star}\right]$.
for all $x_{j} \in \operatorname{Free}(\phi)$:

$$
v^{\star}\left(x_{j}\right)=v\left(x_{j}\right)=v^{\prime}\left(x_{j}\right)
$$

Let $v^{+}\left(x_{j}\right):= \begin{cases}v\left(x_{j}\right) & \text { if } j \neq i \\ v^{\star}\left(x_{j}\right) & \text { if } j=i\end{cases}$
Then v^{+}agrees with v except possibly at x_{i}.

Hence, by $(\star), \mathcal{A} \models \psi\left[v^{+}\right]$.

But $v^{\star}\left(x_{j}\right)=v^{+}\left(x_{j}\right)$ for all $x_{j} \in \operatorname{Free}(\psi)$.
\Rightarrow by $\mathrm{IH}, \mathcal{A} \models \psi\left[v^{\star}\right]$

10.4 Corollary

Let \mathcal{L} be a language, $\alpha, \beta \in \operatorname{Form}(\mathcal{L})$. Assume the variable x_{i} has no free occurrence in α. Then

$$
\vDash\left(\forall x_{i}(\alpha \rightarrow \beta) \rightarrow\left(\alpha \rightarrow \forall x_{i} \beta\right)\right)
$$

Proof:
Let \mathcal{A} be an \mathcal{L}-structure and let v be an assignment in \mathcal{A} such that
$\mathcal{A} \vDash \forall x_{i}(\alpha \rightarrow \beta)[v]$
to show: $\mathcal{A} \vDash\left(\alpha \rightarrow \forall x_{i} \beta\right)[v]$.
So suppose $\mathcal{A} \models \alpha[v]$ to show: $\mathcal{A} \vDash \forall x_{i} \beta[v]$.

So let v^{\star} be an assignment agreeing with v except possibly at x_{i}.
We want: $\mathcal{A} \vDash \beta\left[v^{\star}\right]$
x_{i} is not free in $\alpha \Rightarrow_{10.3} \mathcal{A} \models \alpha\left[v^{\star}\right]$
$(\star) \Rightarrow \mathcal{A} \vDash(\alpha \rightarrow \beta)\left[v^{\star}\right]$
$\Rightarrow \mathcal{A} \equiv \beta\left[v^{\star}\right]$

10.5 Definition

A formula ϕ without free (occurrence of) variables is called a statement or a sentence.

If ϕ is a sentence then, for any \mathcal{L}-structure \mathcal{A}, whether or not $\mathcal{A} \models \phi[v]$ does not depend on the assignment v.

So we write $\mathcal{A} \models \phi$ if $\mathcal{A} \models \phi[v]$ for some/all v.

Say: ϕ is true in \mathcal{A}, or \mathcal{A} is a model of ϕ.
(\rightsquigarrow 'Model Theory')

10.6 Example

Let $\mathcal{L}=\{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (we write x, y, z instead of x_{0}, x_{1}, x_{2})

$$
\begin{aligned}
& \phi_{1}: \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z) \\
& \phi_{2}: \forall x \exists y(f(x, y) \doteq c \wedge f(y, x) \doteq c) \\
& \phi_{3}: \forall x(f(x, c) \doteq x \wedge f(c, x) \doteq x)
\end{aligned}
$$

and let $\phi=\phi_{1} \wedge \phi_{2} \wedge \phi_{3}$.

Let $\mathcal{A}=\langle A ; \circ ; e\rangle$ be an \mathcal{L}-structure (i.e. \circ is an interpretation of f, and e is an interpretation of c.)

Then $\mathcal{A} \vDash \phi$ iff \mathcal{A} is a group.

10.7 Example

Let $\mathcal{L}=\{E\}$ be a language with $E=P_{i}^{(2)}$ a binary relation symbol. Consider

$$
\begin{aligned}
& \chi_{1}: \forall x E(x, x) \\
& \chi_{2}: \forall x \forall y(E(x, y) \leftrightarrow E(y, x)) \\
& \chi_{3}: \forall x \forall y \forall z(E(x, y) \rightarrow(E(y, z) \rightarrow E(x, z)))
\end{aligned}
$$

Then for any \mathcal{L}-structure $\langle A ; R\rangle$:
$\langle A ; R\rangle \vDash\left(\chi_{1} \wedge \chi_{2} \wedge \chi_{3}\right)$ iff
R is an equivalence relation on A.

Note: Most mathematical concepts can be captured by first-order formulas.

10.8 Example

Let P be a 2 -place (i.e. binary) predicate symbol, $\mathcal{L}:=\{P\}$. Consider the statements

$$
\begin{aligned}
\psi_{1}: & \forall x \forall y(P(x, y) \forall x \doteq y \forall P(y, x)) \\
& (\forall \text { means either - or exclusively: } \\
& (\alpha \vee \beta): \Leftrightarrow((\alpha \vee \beta) \wedge \neg(\alpha \wedge \beta))) \\
\psi_{2}: & \forall x \forall y \forall z((P(x, y) \wedge P(y, z)) \rightarrow P(x, z)) \\
\psi_{3}: & \forall x \forall z(P(x, z) \rightarrow \exists y(P(x, y) \wedge P(y, z))) \\
\psi_{4}: & \forall y \exists x \exists z(P(x, y) \wedge P(y, z))
\end{aligned}
$$

These are the axioms for a dense linear order without endpoints. Let $\psi=\left(\psi_{1} \wedge \ldots \wedge \psi_{4}\right)$. Then $\langle\mathbf{Q} ;<\rangle \vDash \psi$ and $\langle\mathbf{R} ;<\rangle \vDash \psi$.

But: The '(Dedekind) Completeness' of $\langle\mathbf{R} ;<\rangle$ is not captured in 1st-order terms using the langauge \mathcal{L}, but rather in 2 nd-order terms, where also quantification over subsets, rather than only over elements of \mathbf{R} is used:

$$
\forall A, B \subseteq \mathbf{R}((A \ll B) \rightarrow \exists c \in \mathbf{R}(A \leq\{c\} \leq B)
$$

where $A \ll B$ means that $a<b$ for every $a \in A$ and every $b \in B$ etc.
10.9 Example: ACF_{0} : Algebraically closed fields of characteristic zero.
$\mathcal{L}:=\{+, \times, 0,1\}$, language of rings
Commutative, associative, distributive laws; the existence of multiplicative inverse of non-zero elements;

Characteristic 0: $1+1 \neq 0,1+1+1 \neq 0, \ldots$
For each $n=2,3,4, \ldots$ a sentence ψ_{n} asserting that every non-constant polynomial has a root. (This is automatic for $n=1$).
$\forall a_{0} \ldots \forall a_{n}\left[\neg a_{n}=0 \rightarrow \exists x\left(a_{n} x^{n}+\ldots+a_{0}=0\right)\right]$
This set of axioms is complete and decidable. (Complete: every sentence ϕ, either ϕ or $\neg \phi$ is a logical consequence of the axioms.)

Examples $10.7,10.8,10.9$ are of the type which will be explored in Part C Model Theory.

10.10 Example: Peano Arithmetic (PA)

This is historically a very important system, studied in Part C Godel's Incompleteness Thms. It is not complete and not decidable.
$\mathcal{L}:=\{0,+, \times, s\}$

The unary s is the "successor function" it is injective and its range if everything except 0 .

Axioms for,$+ \times$
Induction: for every unary formula ϕ the axiom
$[\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x)))] \rightarrow \forall y \phi(y)$
This is weaker than a second order system proposed by Peano which states induction for every subset of \mathbf{N}.

10.11 Example: Set Theory

Several ways of axiomatizing a system for Set Theory, in which all (?) mathematics can be carried out.

The most popular system ZFC is introduced in B1.2 Set Theory, and more formally in Part C Axiomatic Set Theory. ZFC has:
$\mathcal{L}:=\{\in\}$, a binary relation for set membership

Axioms: existence of empty set, pairs, unions, power set,.....

10.12 Example: Second order logic

Lose completeness, compactness.

11. Substitution

Goal: Given $\phi \in \operatorname{Form}(\mathcal{L})$ and $x_{i} \in \operatorname{Free}(\phi)$

- want to replace x_{i} by a term t to obtain a new formula $\phi\left[t / x_{i}\right]$
(read: ' ϕ with x_{i} replaced by t ')
- should have $\left\{\forall x_{i} \phi\right\} \models \phi\left[t / x_{i}\right]$

11.1 Example

Let $\mathcal{L}=\{f ; c\}$ and let ϕ be $\exists x_{1} f\left(x_{1}\right) \doteq x_{0}$.
$\Rightarrow \operatorname{Free}(\phi)=\left\{x_{0}\right\}$ and
${ }^{\prime} \forall x_{0} \phi^{\prime}$, i.e. ' $\forall x_{0} \exists x_{1} f\left(x_{1}\right) \doteq x_{0}$ '
says that f is onto.

- if $t=c$ then $\phi\left[t / x_{0}\right]$ is $\exists x_{1} f\left(x_{1}\right) \doteq c$
- but if $t=x_{1}$ then $\phi\left[t / x_{0}\right]$ is $\exists x_{1} f\left(x_{1}\right) \doteq x_{1}$, stating the existence of a fixed point of f no good: there are fixed point free onto functions, e.g. ' +1 ' on Z .

Problem: the variable x_{1} in t has become unintentionally bound in the substitution.
To avoid this we define:

11.2 Definition

For $\phi \in \operatorname{Form}(\mathcal{L})$, for any variable x_{i} (not necessarily in Free(ϕ)) and for any term $t \in \operatorname{Term}(\mathcal{L})$, define the phrase
' t is free for x_{i} in ϕ '
and the substitution

$$
\phi\left[t / x_{i}\right] \text { (' } \phi \text { with } x_{i} \text { replaced by } t \text { ') }
$$

recursively as follows:
(i) if ϕ is atomic, then t is free for x_{i} in ϕ and $\phi\left[t / x_{i}\right]$ is the result of replacing every occurrence of x_{i} in ϕ by t.
(ii) if $\phi=\neg \psi$ then
t is free for x_{i} in ϕ iff t is free for x_{i} in ψ.
In this case, $\phi\left[t / x_{i}\right]=\neg \alpha$, where $\alpha=\psi\left[t / x_{i}\right]$.
(iii) if $\phi=(\psi \rightarrow \chi)$ then
t is free for x_{i} in ϕ iff
t is free for x_{i} in both ψ and χ.
In this case, $\phi\left[t / x_{i}\right]=(\alpha \rightarrow \beta)$,
where $\alpha=\psi\left[t / x_{i}\right]$ and $\beta=\chi\left[t / x_{i}\right]$.
(iv) if $\phi=\forall x_{j} \psi$ then
t is free for x_{i} in ϕ
if $i=j$ or
if $i \neq j$, and x_{j} does not occur in t, and t is free for x_{i} in ψ.

In this case $\phi\left[t / x_{i}\right]= \begin{cases}\phi & \text { if } i=j \\ \forall x_{j} \alpha & \text { if } i \neq j,\end{cases}$
where $\alpha=\psi\left[t / x_{i}\right]$.

11.3 Example

Let $\mathcal{L}=\{f, g\}$ and let ϕ be $\exists x_{1} f\left(x_{1}\right) \doteq x_{0}$.
$\Rightarrow g\left(x_{0}, x_{2}\right)$ is free for x_{0} in ϕ
and $\phi\left[g\left(x_{0}, x_{2}\right) / x_{0}\right]$ is $\exists x_{1} f\left(x_{1}\right) \doteq g\left(x_{0}, x_{2}\right)$,
but $g\left(x_{0}, x_{1}\right)$ is not free for x_{0} in ϕ.

11.4 Lemma

Let \mathcal{L} be a first-order language, \mathcal{A} an \mathcal{L}-structure, $\phi \in \operatorname{Form}(\mathcal{L})$ and t a term free for the variable x_{i} in ϕ. Let v be an assignment in \mathcal{A} and define

$$
v^{\prime}\left(x_{j}\right):= \begin{cases}v\left(x_{j}\right) & \text { if } j \neq i \\ \widetilde{v}(t) & \text { if } j=i\end{cases}
$$

Then $\mathcal{A}=\phi\left[v^{\prime}\right]$ iff $\mathcal{A}=\phi\left[t / x_{i}\right][v]$.

Proof: 1. For $u \in \operatorname{Term}(\mathcal{L})$ let
$u\left[t / x_{i}\right]:=$ the term obtained by replacing each occurrence of x_{i} in u by t
$\Rightarrow \widetilde{v^{\prime}}(u)=\widetilde{v}\left(u\left[t / x_{i}\right]\right)$
(Exercise)
2. If ϕ is atomic, say
$\phi=P\left(t_{1}, \ldots, t_{k}\right)$ for some $P=P_{i}^{(k)} \in \operatorname{Pred}(\mathcal{L})$
then

$$
\mathcal{A} \models \phi\left[v^{\prime}\right]
$$

iff $P_{\mathcal{A}}\left(\tilde{v^{\prime}}\left(t_{1}\right), \ldots, \tilde{v^{\prime}}\left(t_{k}\right)\right) \quad$ by def. ' \models '
iff $P_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\left[t / x_{i}\right]\right), \ldots, \widetilde{v}\left(t_{k}\left[t / x_{i}\right]\right)\right)$ by 1.
iff $\mathcal{A} \models P\left(t_{1}\left[t / x_{i}\right], \ldots, t_{k}\left[t / x_{i}\right]\right)[v] \quad$ by def. ' \models '
iff $\mathcal{A} \models \phi\left[t / x_{i}\right][v]$

Similarly, if ϕ is $t_{1} \doteq t_{2}$.

3. Induction step

The cases \neg and \rightarrow are routine.
\leadsto the only interesting case is $\phi=\forall x_{j} \psi$.
IH: Lemma holds for ψ.
Case 1: $j=i$
$\Rightarrow \phi\left[t / x_{i}\right]=\phi$ by Definition 11.2.(iv)
$x_{i}=x_{j} \notin \operatorname{Free}(\phi)$
$\Rightarrow v$ and v^{\prime} agree on all $x \in \operatorname{Free}(\phi)$
\Rightarrow by Lemma 10.3,

$$
\mathcal{A} \models \phi\left[v^{\prime}\right] \text { iff } \mathcal{A} \models \phi[v] \text { iff } \mathcal{A} \models \phi\left[t / x_{i}\right][v]
$$

Case 2: $j \neq i$
${ }^{\prime} \Rightarrow$ ' : Suppose $\mathcal{A} \models \forall x_{j} \psi\left[v^{\prime}\right]$
to show: $\mathcal{A} \models \forall x_{j} \psi\left[t / x_{i}\right][v]$

So let v^{\star} agree with v except possibly at x_{j}. to show: $\mathcal{A} \models \psi\left[t / x_{i}\right]\left[v^{\star}\right]$

Define $v^{\star \prime}\left(x_{k}\right):= \begin{cases}v^{\star}\left(x_{k}\right) & \text { if } k \neq i \\ v^{\star}(t) & \text { if } k=i\end{cases}$
t is free for x_{i} in $\phi \Rightarrow$
t is free for x_{i} in ψ and t does not contain x_{j}.
IH \Rightarrow enough to show: $\mathcal{A} \models \psi\left[v^{\star}\right]$
$v^{\star \prime}$ and v^{\prime} agree except possibly at x_{i} and x_{j}. But, in fact, they do agree at x_{i} :

$$
v^{\prime}\left(x_{i}\right)=\widetilde{v}(t)=\widetilde{v^{\star}}(t)=v^{\star \prime}\left(x_{i}\right),
$$

where the 2nd equality holds, because v and v^{\star} agree except possibly at x_{i}, which does not occur in t.
So $v^{\star \prime}$ and v^{\prime} agree except possibly at x_{j} \Rightarrow by ($*$), $\mathcal{A} \models \psi\left[v^{\star}\right]$ as required.
' \Leftarrow ': similar.

11.5 Corollary

For any $\phi \in \operatorname{Form}(\mathcal{L}), t \in \operatorname{Term}(\mathcal{L})$,

$$
\equiv\left(\forall x_{i} \phi \rightarrow \phi\left[t / x_{i}\right]\right)
$$

provided that the term t is free for x_{i} in ϕ.

Proof: Let \mathcal{A} be an \mathcal{L}-structure and let v be an assignment in \mathcal{A}.

Assume $\mathcal{A} \models \forall x_{i} \phi[v]$
to show: $\mathcal{A} \vDash \phi\left[t / x_{i}\right][v]$

By Lemma 11.4, it suffices to show $\mathcal{A}=\phi\left[v^{\prime}\right]$, where

$$
v^{\prime}\left(x_{j}\right):= \begin{cases}v\left(x_{j}\right) & \text { for } j \neq i \\ \widetilde{v}(t) & \text { for } j=i\end{cases}
$$

Since v and v^{\prime} agree except possibly at x_{i}, this follows from (\star).

12. A formal system for Predicate Calculus

12.1 Definition

Associate to each first-order language \mathcal{L} the formal system $K(\mathcal{L})$ with the following axioms and rules (for any $\alpha, \beta, \gamma \in \operatorname{Form}(\mathcal{L}), t \in \operatorname{Term}(\mathcal{L})$):

Axioms

A1 $(\alpha \rightarrow(\beta \rightarrow \alpha))$
A2 $((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)))$
A3 $((\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta))$
A4 $\left(\forall x_{i} \alpha \rightarrow \alpha\left[t / x_{i}\right]\right)$, where t is free for x_{i} in α A5 $\left(\forall x_{i}(\alpha \rightarrow \beta) \rightarrow\left(\alpha \rightarrow \forall x_{i} \beta\right)\right)$, provided that $x_{i} \notin$ Free (α)
A6 $\forall x_{i} x_{i} \doteq x_{i}$
A7 $\left(x_{i} \doteq x_{j} \rightarrow\left(\phi \rightarrow \phi^{\prime}\right)\right)$, where ϕ is atomic and ϕ^{\prime} is obtained from ϕ by replacing some (not necessarily all) occurrences of x_{i} in ϕ by x_{j}

Rules

MP (Modus Ponens) From α and $(\alpha \rightarrow \beta$) infer β
\forall (Generalisation) From α infer $\forall x_{i} \alpha$
Thinning Rule see 12.6
ϕ is a theorem of $K(\mathcal{L})$ (write ' $\vdash \phi$ ') if there is a sequence (a derivation, or a proof) $\phi_{1}, \ldots, \phi_{n}$ of \mathcal{L}-formulas with $\phi_{n}=\phi$ such that each ϕ_{i} either is an axiom or is obtained from earlier ϕ_{j} 's by MP or \forall.

For $\Gamma \subseteq \operatorname{Form}(\mathcal{L}), \phi \in \operatorname{Form}(\mathcal{L})$ define similarly that ϕ is derivable in $K(\mathcal{L})$ from the hypotheses \ulcorner (write ' $\ulcorner\vdash \phi$ '), except that the ϕ_{i} 's may now also be formulas from Γ, but we make the restriction that \forall may only be used for variables x_{i} not occurring free in any formula in Γ.
12.2 Soundness Theorem for Pred. Calc.

$$
\text { If } \Gamma \vdash \phi \text { then } \Gamma \models \phi .
$$

Proof: Induction on length of derivation
Clear that $\mathbf{A 1}, \mathbf{A} 2$, and $\mathbf{A 3}$ are logically valid. So are A4 and A5 by Cor. 11.5 resp. Cor. 10.4.

Also A6 is logically valid: easy exercise.
A7: Let \mathcal{A} be an \mathcal{L}-structure and let v be any assignment in \mathcal{A}. Suppose that

$$
\mathcal{A} \models x_{i} \doteq x_{j}[v] \text { and } \mathcal{A} \models \phi[v] .
$$

We want to show that $\mathcal{A} \models \phi^{\prime}[v]$ (with ϕ atomic).
Now $v\left(x_{i}\right)=v\left(x_{j}\right)$
$\Rightarrow \widetilde{v}\left(t^{\prime}\right)=\widetilde{v}(t)$ for any term t^{\prime} obtained from t by replacing some of the x_{i} by x_{j}
(easy induction on terms)

If ϕ is $P\left(t_{1}, \ldots, t_{k}\right)$ then ϕ^{\prime} is $P\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.

$$
\begin{aligned}
\mathcal{A}=\phi[v] & \text { iff } P_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right) \\
& \text { iff } P_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}^{\prime}\right), \ldots, \widetilde{v}\left(t_{k}^{\prime}\right)\right) \\
& \text { iff } \mathcal{A} \models P\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)[v] \\
& \text { ifs } \mathcal{A} \equiv \phi^{\prime}[v] \text { as required }
\end{aligned}
$$

Similarly, if ϕ is $t_{1} \doteq t_{2}$.
So now all axioms are logically valid.
MP is sound: for any \mathcal{A}, v
$\mathcal{A} \models \alpha[v]$ and $\mathcal{A} \models(\alpha \rightarrow \beta)[v]$ imply $\mathcal{A} \models \beta[v]$

Generalisation: IH for any \mathcal{A}, v if $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma$ then $\mathcal{A} \models \alpha[v]$
to show: $\mathcal{A} \models \forall x_{i} \alpha[v]$ for such \mathcal{A}, v.
So let v^{\star} agree with v except possibly at x_{i}. $x_{i} \notin \operatorname{Free}(\psi)$ for any $\psi \in \Gamma$
$\Rightarrow \mathcal{A} \vDash \psi\left[v^{\star}\right]$ for all $\psi \in \Gamma$ (by Lemma 10.3)
$\Rightarrow \mathcal{A}=\alpha\left[v^{\star}\right]$ (by (\star))
$\Rightarrow \mathcal{A}=\forall x_{i} \alpha[v]$ as required.

12.3 Deduction Theorem for Pred. Calc.

$$
\text { If } \Gamma \cup\{\psi\} \vdash \phi \text { then }\ulcorner\vdash(\psi \rightarrow \phi) \text {. }
$$

Proof: same as for prop. calc. (Theorem 6.6) with one more step in the induction (on the length of the derivation).

IH: $\Gamma \vdash\left(\psi \rightarrow \phi_{j}\right)$ to show: $\Gamma \vdash\left(\psi \rightarrow \forall x_{i} \phi_{j}\right)$, where generalisation (\forall) has been used to infer $\forall x_{i} \phi_{j}$ under the hypotheses $\Gamma \cup\{\psi\}$
$\Rightarrow x_{i} \notin \operatorname{Free}(\gamma)$ for any $\gamma \in \Gamma$ and $x_{i} \notin \operatorname{Free}(\psi)$
\Rightarrow by IH and $\forall: \Gamma \vdash \forall x_{i}\left(\psi \rightarrow \phi_{j}\right)$
A5 $\vdash\left(\forall x_{i}\left(\psi \rightarrow \phi_{j}\right) \rightarrow\left(\psi \rightarrow \forall x_{i} \phi_{j}\right)\right)$, since $x_{i} \notin$ Free (ψ)
\Rightarrow by MP, $\left\ulcorner\vdash\left(\psi \rightarrow \forall x_{i} \phi_{j}\right)\right.$ as required.

12.4 Tautologies

If A is a tautology of the Propositional Calculus with propositional variables among p_{0}, \ldots, p_{n}, and if $\psi_{0}, \ldots, \psi_{n} \in \operatorname{Form}(\mathcal{L})$ are formulas of Predicate Calculus, then the formula A^{\prime} obtained from A by replacing each p_{i} by ψ_{i} is a tautology of \mathcal{L} :

Since A1, A2, A3 and MP are in $K(\mathcal{L})$, one also has $\vdash A^{\prime}$ in $K(\mathcal{L})$.

May use the tautologies in derivations in $K(\mathcal{L})$.

12.5 Example Swapping variables

Suppose x_{j} does not occur in ϕ.
Then $\left\{\forall x_{i} \phi\right\} \vdash \forall x_{j} \phi\left[x_{j} / x_{i}\right]$

$$
\begin{array}{lll}
1 & \forall x_{i} \phi & {[\in \Gamma]} \\
2 & \left.\forall x_{i} \phi \rightarrow \phi\left[x_{j} / x_{i}\right]\right) & \text { [A4] } \\
3 & \phi\left[x_{j} / x_{i}\right] & \text { [MP } 1,2] \\
4 & \forall x_{j} \phi\left[x_{j} / x_{i}\right] & {[\forall]}
\end{array}
$$

where \forall may be applied in line 4 , since x_{j} does not occur in ϕ.

This proof would not work if
$\Gamma=\left\{\forall x_{i} \phi, x_{j} \doteq x_{j}\right\}$ (say). Hence need (besides MP and (\forall))

12.6 Thinning Rule

$$
\text { If } \Gamma \vdash \phi \text { and } \Gamma^{\prime} \supseteq \Gamma \text { then } \Gamma^{\prime} \vdash \phi .
$$

12.7 Example

$$
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash \forall x_{i}(\phi \rightarrow \psi)
$$

where $x_{i} \notin \operatorname{Free}(\psi)$.

Proof: Let 「 $=\left\{\left(\exists x_{i} \phi \rightarrow \psi\right), \neg \psi\right\}$

1	$\left(\neg \forall x_{i} \neg \phi \rightarrow \psi\right)$	$[\in \Gamma]$
2	$\left(\left(\neg \forall x_{i} \neg \phi \rightarrow \psi\right) \rightarrow\left(\neg \psi \rightarrow \forall x_{i} \neg \phi\right)\right)$	[taut.]
3	$\left(\neg \psi \rightarrow \forall x_{i} \neg \phi\right)$	[MP 1,2]
$4 \neg \psi$	$[\in \Gamma]$	
$5 \forall x_{i} \neg \phi$	[MP 3,4]	
6	$\left(\forall x_{i} \neg \phi \rightarrow \neg \phi\right)$	[A4]
$7 \neg \phi$	[MP 5,6]	

Note that in line 6, x_{i} is free for x_{i} in ϕ.

Hence $\Gamma \vdash \neg \phi$. So

$$
\begin{array}{ll}
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash(\neg \psi \rightarrow \neg \phi) & {[\mathrm{DT}]} \\
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash(\phi \rightarrow \psi) & {[\mathrm{A3}, \mathrm{MP}]} \\
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash \forall x_{i}(\phi \rightarrow \psi) & {[\forall]}
\end{array}
$$

13. The Completeness Theorem for Predicate Calculus
13.1 Theorem (Gödel)

Let $\Gamma \subseteq \operatorname{Form}(\mathcal{L}), \phi \in \operatorname{Form}(\mathcal{L})$.

$$
\text { If }\ulcorner\models \phi \text { then }\ulcorner\vdash \phi .
$$

Two additional assumptions:

- Assume all $\gamma \in \Gamma$ and ϕ are sentences - the Theorem is true more generally, but the proof is much harder and applications are typically to sentences.
- Further assumption (for the start - later we do the general case): no \doteq-symbol in any formula of Γ or in ϕ.

First Step

Call $\Delta \subseteq \operatorname{Sent}(\mathcal{L})$ consistent if for no sentence ψ, both $\Delta \vdash \psi$ and $\Delta \vdash \neg \psi$.
13.2. To prove 13.1 it is enough to prove: (\star) Every consistent set of sentences has a model.
i.e. Δ consistent \Rightarrow
there is an \mathcal{L}-structure \mathcal{A} such that $\mathcal{A} \models \delta$ for every $\delta \in \Delta$.

Proof of 13.2: Assume $\Gamma \models \phi$ and assume (\star). $\Rightarrow \Gamma \cup\{\neg \phi\}$ has no model
$\Rightarrow{ }_{(\star)}\ulcorner\cup\{\neg \phi\}$ is not consistent
$\Rightarrow \Gamma \cup\{\neg \phi\} \vdash \psi$ and $\Gamma \cup\{\neg \phi\} \vdash \neg \psi$ for some ψ
\Rightarrow DT $\Gamma \vdash(\neg \phi \rightarrow \psi)$ and $\Gamma \vdash(\neg \phi \rightarrow \neg \psi)$ for some ψ
But $\Gamma \vdash((\neg \phi \rightarrow \psi) \rightarrow((\neg \phi \rightarrow \neg \psi) \rightarrow \phi))$ [taut.]
$\Rightarrow \Gamma \vdash \phi[2 \times M P] \quad \square_{13.2}$

Second Step

We shall need an infinite supply of constant symbols.

To do this, let ϕ^{\prime} be the formula obtained by replacing every occurrence of c_{n} by $c_{2 n}$.

For $\Delta \subseteq \operatorname{Form}(\mathcal{L})$ let

$$
\Delta^{\prime}:=\left\{\phi^{\prime} \mid \phi \in \Delta\right\}
$$

Then
13.3 Lemma
(a) Δ consistent $\Rightarrow \Delta^{\prime}$ consistent
(b) Δ^{\prime} has a model $\Rightarrow \Delta$ has a model.

Proof: Easy exercise. \square

Third Step

- $\Delta \subseteq \operatorname{Sent}(\mathcal{L})$ is called maximal consistent if Δ is consistent, and for any $\psi \in \operatorname{Sent}(\mathcal{L})$: $\Delta \vdash \psi$ or $\Delta \vdash \neg \psi$.
- $\Delta \subseteq \operatorname{Sent}(\mathcal{L})$ is called witnessing if for all $\psi \in \operatorname{Form}(\mathcal{L})$ with $\operatorname{Free}(\psi) \subseteq\left\{x_{i}\right\}$ and with $\Delta \vdash \exists x_{i} \psi$ there is some $c_{j} \in \operatorname{Const}(\mathcal{L})$ such that $\Delta \vdash \psi\left[c_{j} / x_{i}\right]$

13.4 To prove CT it is enough to show:

 Every maximal consistent witnessing set Δ of sentences has a model.For the proof of 13.4 we need 2 Lemmas:

13.5 Lemma

If $\Delta \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent, then for any sentence ψ, either $\Delta \cup\{\psi\}$ or $\Delta \cup\{\neg \psi\}$ is consistent.

Proof: Exercise - as for Propositional Calculus.

13.6 Lemma

Assume $\Delta \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent, $\exists x_{i} \psi \in$ Sent $(\mathcal{L}), \Delta \vdash \exists x_{i} \psi$, and c_{j} is not occurring in ψ nor in any $\delta \in \Delta$.

Then $\Delta \cup\left\{\psi\left[c_{j} / x_{i}\right]\right\}$ is consistent.

Proof:
Assume, for a contradiction, that there is some $\chi \in \operatorname{Sent}(\mathcal{L})$ such that
$\Delta \cup\left\{\psi\left[c_{j} / x_{i}\right]\right\} \vdash \chi$ and $\Delta \cup\left\{\psi\left[c_{j} / x_{i}\right]\right\} \vdash \neg \chi$.
May assume that c_{j} does not occur in χ
(since $\vdash(\chi \rightarrow(\neg \chi \rightarrow \theta))$ for any sentence $\theta)$.
By DT, $\Delta \vdash\left(\psi\left[c_{j} / x_{i}\right] \rightarrow \chi\right)$
and $\Delta \vdash\left(\psi\left[c_{j} / x_{i}\right] \rightarrow \neg \chi\right)$.

Then also

$$
\Delta \vdash(\psi \rightarrow \chi) \text { and } \Delta \vdash(\psi \rightarrow \neg \chi)
$$

(Exercise Sheet $\sharp 4$ (2)(ii))

By $\forall, \Delta \vdash \forall x_{i}(\psi \rightarrow \chi)$
and $\Delta \vdash \forall x_{i}(\psi \rightarrow \neg \chi)$
(note that $x_{i} \notin \operatorname{Free}(\delta)$ for any $\delta \in \Delta \subseteq \operatorname{Sent}(\mathcal{L})$).

Now: $\vdash\left(\forall x_{i}(A \rightarrow B) \rightarrow\left(\exists x_{i} A \rightarrow B\right)\right)$
for any $A, B \in \operatorname{Form}(\mathcal{L})$ with $x_{i} \notin \operatorname{Free}(B)$
(Exercise Sheet $\sharp 4$, (2)(i))
$\mathrm{MP} \Rightarrow \Delta \vdash\left(\exists x_{i} \psi \rightarrow \chi\right)$
and $\Delta \vdash\left(\exists x_{i} \psi \rightarrow \neg \chi\right)$
$\left(\chi, \neg \chi \in \operatorname{Sent}(\mathcal{L})\right.$, so $\left.x_{i} \notin \operatorname{Free}(\chi)\right)$

By hypothesis, $\Delta \vdash \exists x_{i} \psi$
\Rightarrow by MP, $\Delta \vdash \chi$ and $\Delta \vdash \neg \chi$
contradicting consistency of Δ.
$\square_{13.6}$

Proof of 13.4:

Let Δ be any consistent set of sentences.
to show: Δ has a model assuming that any maximal consistent, witnessing set of sentences has a model.

By 13.3(a), Δ^{\prime} is consistent and does not contain any $c_{2 m+1}$.

Let $\phi_{1}, \phi_{2}, \phi_{3}, \ldots$ be an enumeration of $\operatorname{Sent}\left(\mathcal{L}^{\prime} \cup\left\{c_{1}, c_{3}, c_{5}, \ldots\right\}\right)$.

Construct finite sets $\subseteq \operatorname{Sent}\left(\mathcal{L}^{\prime} \cup\left\{c_{1}, c_{3}, c_{5}, \ldots\right\}\right)$

$$
\Gamma_{0} \subseteq \Gamma_{1} \subseteq \Gamma_{2} \subseteq \ldots
$$

such that $\Delta^{\prime} \cup \Gamma_{n}$ is consistent for each $n \geq 0$ as follows:

Let $\Gamma_{0}:=\emptyset$.
If Γ_{n} has been constructed let
$\Gamma_{n+1 / 2}:= \begin{cases}\Gamma_{n} \cup\left\{\phi_{n+1}\right\} & \text { if } \Delta^{\prime} \cup \Gamma_{n} \cup\left\{\phi_{n+1}\right\} \\ \Gamma_{n} \cup\left\{\neg \phi_{n+1}\right\} & \text { otherwise constent }\end{cases}$
$\Rightarrow \Gamma_{n+1 / 2}$ is consistent (Lemma 13.5)
Now, if $\neg \phi_{n+1} \in \Gamma_{n+1 / 2}$ or if ϕ_{n+1} is not of the form $\exists x_{i} \psi$, let $\Gamma_{n+1}:=\Gamma_{n+1 / 2}$.

If not, i.e. if $\phi_{n+1}=\exists x_{i} \psi \in \Gamma_{n+1 / 2}$ then $\Delta^{\prime} \cup \Gamma_{n+1 / 2} \vdash \exists x_{i} \psi$.

Choose m large enough such that $c_{2 m+1}$ does not occur in any formula in $\Delta^{\prime} \cup \Gamma_{n+1 / 2} \cup\{\psi\}$ (possible since $\Gamma_{n+1 / 2} \cup\{\psi\}$ is finite and Δ^{\prime} has only even constants).

Let $\Gamma_{n+1}:=\Gamma_{n+1 / 2} \cup\left\{\psi\left[c_{2 m+1} / x_{i}\right]\right\}$
\Rightarrow by Lemma 13.6, Γ_{n+1} is consistent.

Let $\Gamma:=\Delta^{\prime} \cup \bigcup_{n \geq 0} \Gamma_{n}$.
$\Rightarrow \Gamma$ is maximal consistent
(as in Propositional Calculus)
and Γ is witnessing (by construction).

By assumption, 「 has a model, say \mathcal{A}.
\Rightarrow in particular, $\Gamma \models \delta$ for any $\delta \in \Delta^{\prime}$
\Rightarrow by Lemma 13.3(b), Δ has a model
$\square_{13.4}$

So to prove CT it remains to show:

Every maximal consistent witnessing set Δ of sentences has a model.

13.7 Theorem (CT after reduction 13.4)

Let Γ be a maximal consistent witnessing set of sentences not containing a \doteq-symbol.
Then 「 has a model.

Proof:
Let $A:=\{t \in \operatorname{Term}(\mathcal{L}) \mid t$ is closed $\}$
(recall: t closed means no variables in t).
A will be the domain of our model \mathcal{A} of Γ (\mathcal{A} is called term model).

For $P=P_{n}^{(k)} \in \operatorname{Pred}(\mathcal{L})$ resp. $f=f_{n}^{(k)} \in$ $\operatorname{Fct}(\mathcal{L})$ resp. $c=c_{n} \in \operatorname{Const}(\mathcal{L})$ define the interpretations $P_{\mathcal{A}}$ resp. $f_{\mathcal{A}}$ resp. $c_{\mathcal{A}}$ by

$$
\begin{aligned}
P_{\mathcal{A}}\left(t_{1}, \ldots, t_{k}\right) \text { holds } & : \Leftrightarrow\left\ulcorner\vdash P\left(t_{1}, \ldots, t_{k}\right)\right. \\
f_{\mathcal{A}}\left(t_{1}, \ldots, t_{k}\right) & :=f\left(t_{1}, \ldots, t_{k}\right) \\
c_{\mathcal{A}} & :=c
\end{aligned}
$$

to show: $\mathcal{A} \models \Gamma$
(i.e. $\mathcal{A} \vDash \Gamma[v]$ for some/all assignments v in \mathcal{A} : note that Γ contains only sentences).

Let v be an assignment in \mathcal{A}, say $v\left(x_{i}\right)=: s_{i} \in A$ for $i=0,1,2, \ldots$.

Claim 1: For any $u \in \operatorname{Term}(\mathcal{L}): \widetilde{v}(u)=u[\vec{s} / \vec{x}]$ (:= the closed term obtained by replacing each x_{i} in u by s_{i})

Proof: by induction on u

- $u=x_{i} \Rightarrow$
$\widetilde{v}(u)=v\left(x_{i}\right)=s_{i}=x_{i}\left[s_{i} / x_{i}\right]=u[\vec{s} / \vec{x}]$
- $u=c \in \operatorname{Const}(\mathcal{L}) \Rightarrow$
$\widetilde{v}(u[\vec{s} / \vec{x}])=\widetilde{v}(u)=v(c)=c_{\mathcal{A}}$
- $u=f\left(t_{1}, \ldots, t_{k}\right) \Rightarrow$
$\widetilde{v}(u):=f_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right)$
$=f_{\mathcal{A}}\left(t_{1}[\vec{s} / \vec{x}], \ldots, t_{k}[\vec{s} / \vec{x}]\right)$ by IH
$=f\left(t_{1}[\vec{s} / \vec{x}], \ldots, t_{k}[\vec{s} / \vec{x}]\right) \quad$ by def. of $f_{\mathcal{A}}$
$=f\left(t_{1}, \ldots, t_{k}\right)[\vec{s} / \vec{x}] \quad$ by def. of subst.
$=u[\vec{s} / \vec{x}]$
$\square_{\text {Claim }} 1$
Lecture 14-2/8

Claim 2: For any $\phi \in \operatorname{Form}(\mathcal{L})$ without \doteq symbol:

$$
\mathcal{A} \models \phi[v] \text { iff } \Gamma \vdash \phi[\vec{s} / \vec{x}],
$$

where $\phi[\vec{s} / \vec{x}]:=$ the sentence obtained by replacing each free occurrence of x_{i} by s_{i} : note that s_{i} is free for x_{i} in ϕ because s_{i} is a closed term.

Proof: by induction on ϕ
ϕ atomic, i.e.
$\phi=P\left(t_{1}, \ldots, t_{k}\right)$ for some $P=P_{n}^{(k)} \in \operatorname{Pred}(\mathcal{L})$
Then

$$
\begin{array}{lll}
& \mathcal{A} \models \phi[v] & \\
\text { iff } & P_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right) & \text { [def. of ' }=\text { '] } \\
\text { iff } & P_{\mathcal{A}}\left(t_{1}[\vec{s} / \vec{x}], \ldots, t_{k}[\vec{s} / \vec{x}]\right) & \text { [Claim 1] } \\
\text { iff } & \vdash P\left(t_{1}[\vec{s} / \vec{x}], \ldots, t_{k}[\vec{s} / \vec{x}]\right) & \text { [def. of } \left.P_{\mathcal{A}}\right] \\
\text { iff } & \left\ulcorner\vdash P\left(t_{1}, \ldots, t_{k}\right)[\vec{s} / \vec{x}]\right. & \text { [def. subst.] } \\
\text { iff } & \Gamma \vdash \phi[\vec{s} / \vec{x}] &
\end{array}
$$

Note that Claim 2 might be false for formulas of the form $t_{1} \doteq t_{2}$: might have $\Gamma \vdash c_{0} \doteq c_{1}$, but c_{0}, c_{1} are distinct elements in A.

Induction Step

$$
\mathcal{A} \models \neg \phi[v]
$$

eff $\operatorname{not} \mathcal{A} \vDash \phi[v] \quad$ [def. of ' \equiv '] eff not $\Gamma \vdash \phi[\vec{s} / \vec{x}]$ [LH]
iff $\Gamma \vdash \neg \phi[\vec{s} / \vec{x}] \quad$ [Γ max. cons.]

$$
\mathcal{A} \models(\phi \rightarrow \psi)[v]
$$

eff $\operatorname{not} \mathcal{A} \vDash \phi[v]$ or $\mathcal{A} \vDash \psi[v] \quad$ [def. ' \vDash ']
iff not $\Gamma \vdash \phi[\vec{s} / \vec{x}]$ or $\Gamma \vdash \psi[\vec{s} / \vec{x}]$ [TH]
eff $\Gamma \vdash \neg \phi[\vec{s} / \vec{x}]$ or $\Gamma \vdash \psi[\vec{s} / \vec{x}] \quad$ [Γ max.]
eff $\ulcorner\vdash(\neg \phi[\vec{s} / \vec{x}] \vee \psi[\vec{s} / \vec{x}])$
iff $\Gamma \vdash(\phi[\vec{s} / \vec{x}] \rightarrow \psi[\vec{s} / \vec{x}])$
[def. ' \vdash ']
eff $\Gamma \vdash(\phi \rightarrow \psi)[\vec{s} / \vec{x}]$
[taut.]
[def. subst.]
\forall-step ' \Rightarrow '
Suppose $\mathcal{A} \vDash \forall x_{i} \phi[v]$
but not $\Gamma \vdash\left(\forall x_{i} \phi\right)[\vec{s} / \vec{x}]$

$$
\begin{aligned}
& \Rightarrow\left\ulcorner\vdash\left(\neg \forall x_{i} \phi\right)[\vec{s} / \vec{x}]\right. \\
& \Rightarrow\left\ulcorner\vdash\left(\exists x_{i} \neg \phi\right)[\vec{s} / \vec{x}]\right.
\end{aligned}
$$

(Exercise)

Now let ϕ^{\prime} be the result of substituting each free occurrence of x_{j} in ϕ by s_{j} for all $j \neq i$.

$$
\begin{aligned}
& \Rightarrow\left(\exists x_{i} \neg \phi\right)[\vec{s} / \vec{x}]=\exists x_{i} \neg \phi^{\prime} \\
& \Rightarrow \Gamma \vdash \exists x_{i} \neg \phi^{\prime}
\end{aligned}
$$

\ulcorner witnessing \Rightarrow
$\Gamma \vdash \neg \phi^{\prime}\left[c / x_{i}\right]$ for some $c \in \operatorname{Const}(\mathcal{L})$

Define

$$
\begin{aligned}
& v^{\star}\left(x_{j}\right):=\left\{\begin{array}{cc}
v\left(x_{j}\right) & \text { if } j \neq i \\
c & \text { if } j=i
\end{array} \text { and } s_{j}^{\star}:=\left\{\begin{array}{cc}
s_{j} & \text { if } j \neq i \\
c & \text { if } j=i
\end{array}\right.\right. \\
& \Rightarrow \neg \phi^{\prime}\left[c / x_{i}\right]=\neg \phi\left[\overrightarrow{\left.s^{\star} / \vec{x}\right]}\right. \\
& \Rightarrow \Gamma \vdash \neg \phi\left[\overrightarrow{\left.s^{\star} / \vec{x}\right]}\right. \\
& \left.\Rightarrow \Gamma \vDash \neg \phi v^{\star}\right]
\end{aligned}
$$

But, by $(\star), \mathcal{A} \models \phi\left[v^{\star}\right]$: contradiction.
\forall-step ' \Leftarrow ':
Suppose $\mathcal{A} \not \vDash \forall x_{i} \phi[v]$
\Rightarrow for some v^{\star} agreeing with v except possibly at x_{i}

$$
\mathcal{A} \models \neg \phi\left[v^{\star}\right]
$$

Let $s_{j}^{\star}:=\left\{\begin{array}{cc}s_{j} & \text { for } j \neq i \\ v^{\star}\left(x_{j}\right) & \text { for } j=i\end{array}\right.$
$\mathrm{IH} \Rightarrow \Gamma \vdash \neg \phi\left[\overrightarrow{s^{\star}} / \vec{x}\right]$,
i.e. $\Gamma \vdash \neg \phi^{\prime}\left[s_{i}^{\star} / x_{i}\right]$,
where ϕ^{\prime} is the result of substituting each free occurrence of x_{j} in ϕ by s_{j} for all $j \neq i$
$\Rightarrow \Gamma \vdash \exists x_{i} \neg \phi^{\prime}$
(Exercise:
$\chi \in \operatorname{Form}(\mathcal{L})$, $\operatorname{Free}(\chi) \subseteq\left\{x_{i}\right\}, s$ a closed term
$\left.\Rightarrow \vdash\left(\chi\left[s / x_{i}\right] \rightarrow \exists x_{i} \chi\right)\right)$

So

$$
\begin{aligned}
& \Gamma \vdash \neg \forall x_{i} \neg \neg \phi^{\prime} \\
\Rightarrow & \Gamma \vdash \neg \forall x_{i} \phi^{\prime} \\
\Rightarrow & \Gamma \vdash\left(\neg \forall x_{i} \phi\right)[\vec{s} / \vec{x}] \\
\Rightarrow & \Gamma \vdash\left(\forall x_{i} \phi\right)[\vec{s} / \vec{x}]
\end{aligned}
$$

$\square_{\text {Claim } 2}$
Now choose any $\phi \in \Gamma \subseteq \operatorname{Sent}(\mathcal{L})$
$\Rightarrow \quad \phi[\vec{s} / \vec{x}]=\phi$
$\Rightarrow \mathcal{A} \models \phi[v]$, i.e. $\mathcal{A} \models \phi$
[Claim 2]
$\Rightarrow \mathcal{A} \models \Gamma$
$\square_{13.7}$
Lecture 14-7/8

13.8 Modification required for $\doteq-$ symbol

Define an equivalence relation E on A by

$$
t_{1} E t_{2} \text { iff } \Gamma \vdash t_{1} \doteq t_{2}
$$

(easy to check: this is an equivalence relation, e.g. transitivity $=(1)$ (ii) of sheet $\sharp 4$).

Let A / E be the set of equivalence classes t / E (with $t \in A$).

Define \mathcal{L}-structure \mathcal{A} / E with domain A / E by

$$
\begin{aligned}
P_{\mathcal{A} / E}\left(t_{1} / E, \ldots, t_{k} / E\right) & : \Leftrightarrow \Gamma \vdash P\left(t_{1}, \ldots, t_{k}\right) \\
f_{\mathcal{A} / E}\left(t_{1} / E, \ldots, t_{k} / E\right) & :=f_{\mathcal{A}}\left(t_{1}, \ldots, t_{k}\right) \\
c_{\mathcal{A} / E} & :=c_{\mathcal{A}} / E
\end{aligned}
$$

check: independence of representatitves of t / E (this is the purpose of Axiom A7).

Rest of the proof is much the same as before.

14. Applications of Gödel's
 Completeness Theorem

14.1 Compactness Theorem for Predicate Calculus
 Let \mathcal{L} be a first-order language and let $\Gamma \subseteq \operatorname{Sent}(\mathcal{L})$.

Then 「 has a model iff every finite subset of Γ has a model.

Proof: as for Propositional Calculus - Exercise sheet $\sharp 4$, (5)(ii).

14.2 Example

Let $\Gamma \subseteq \operatorname{Sent}(\mathcal{L})$. Assume that for every $N \geq 1$, Γ has a model whose domain has at least N elements.

Then Γ has a model with an infinite domain.

Proof:

For each $n \geq 2$ let χ_{n} be the sentence

$$
\exists x_{1} \exists x_{2} \cdots \exists x_{n} \bigwedge_{1 \leq i<j \leq n} \neg x_{i} \doteq x_{j}
$$

\Rightarrow for any \mathcal{L}-structure $\mathcal{A}=\langle A ; \ldots\rangle$,

$$
\mathcal{A} \models \chi_{n} \text { iff } \sharp A \geq n
$$

Let $\Gamma^{\prime}:=\Gamma \cup\left\{\chi_{n} \mid n \geq 1\right\}$.
If $\Gamma_{0} \subseteq \Gamma^{\prime}$ is finite,
let N be maximal with $\chi_{N} \in \Gamma_{0}$. By hypothesis, $\Gamma \cup\left\{\chi_{N}\right\}$ has a model.
$\Rightarrow \Gamma_{0}$ has a model
(note that $\vdash \chi_{N} \rightarrow \chi_{N-1} \rightarrow \chi_{N-2} \rightarrow \ldots$)
\Rightarrow By the Compactness Theorem 14.1,
Γ^{\prime} has a model, say $\mathcal{A}=\langle A ; \ldots\rangle$
$\Rightarrow \mathcal{A}=\chi_{n}$ for all $n \Rightarrow \sharp A=\infty$ \square

14.3 The Löwenheim-Skolem Theorem

Let $\Gamma \subseteq \operatorname{Sent}(\mathcal{L})$ be consistent.
Then Γ has a model with a countable domain.
Proof:
This follows from the proof of the Completeness Theorem:
The term model constructed there was countable, because there are only countably many closed terms.

14.4 Definition

(i) Let \mathcal{A} be an \mathcal{L}-structure.

Then the \mathcal{L}-theory of \mathcal{A} is

$$
\operatorname{Th}(\mathcal{A}):=\{\phi \in \operatorname{Sent}(\mathcal{L}) \mid \mathcal{A} \models \phi\},
$$

the set of all \mathcal{L}-sentences true in \mathcal{A}.
Note: $\operatorname{Th}(\mathcal{A})$ is maximal consistent.
(ii) If \mathcal{A} and \mathcal{B} are \mathcal{L}-structures with $\operatorname{Th}(\mathcal{A})=$ $\operatorname{Th}(\mathcal{B})$ then \mathcal{A} and \mathcal{B} are elementarily equivalent (in symbols ' $\mathcal{A} \equiv \mathcal{B}$ ').

14.5 Remark

Let 「 $\subseteq \operatorname{Sent}(\mathcal{L})$ be any set of \mathcal{L}-sentences.
Then TFAE:
(i) Γ is strongly maximal consistent (i.e. for each \mathcal{L}-sentence $\phi, \phi \in \Gamma$ of $\neg \phi \in \Gamma$)
(ii) 「 $=\operatorname{Th}(\mathcal{A})$ for some \mathcal{L}-structure \mathcal{A}

Proof:
(i) \Rightarrow (ii): Completeness Theorem

Rest: clear.

Note that Γ is maximal consistent if and only if Γ has models, and, for any two models \mathcal{A} and $\mathcal{B}, \mathcal{A} \equiv \mathcal{B}$.

A worked example:

Dense linear orderings without endpoints

Let $\mathcal{L}=\{<\}$ be the language with just one binary predicate symbol ' $<$ ',
and let Γ be the \mathcal{L}-theory of dense linear orderings without endpoints (cf. Example 10.8) consisting of the axioms $\psi_{1}, \ldots, \psi_{4}$:

$$
\begin{aligned}
\psi_{1}: & \forall x \forall y((x<y \vee x \doteq y \vee y<x) \\
& \wedge \neg((x<y \wedge x \doteq y) \vee(x<y \wedge y<x))) \\
\psi_{2}: & \forall x \forall y \forall z(x<y \wedge y<z) \rightarrow x<z) \\
\psi_{3}: & \forall x \forall z(x<z \rightarrow \exists y(x<y \wedge y<z)) \\
\psi_{4}: & \forall y \exists x \exists z(x<y \wedge y<z)
\end{aligned}
$$

14.6 (a) Examples

$\mathbf{Q}, \mathbf{R},] 0,1[, \mathbf{R} \backslash\{0\},[\sqrt{2}, \pi] \cap \mathbf{Q}] 0,,1[\cup] 2,3[$, or $\mathbf{Z} \times \mathbf{R}$ with lexicographic ordering:
$(a, b)<(c, d) \Leftrightarrow a<c$ or $(a=c \& b<d)$
(b) Counterexamples $[0,1], \mathrm{Z},\{0\}, \mathrm{R} \backslash] 0,1[$ or $\mathbf{R} \times \mathbf{Z}$ with lexicographic ordering

14.7 Theorem

Let Γ be the theory of dense linear orderings without endpoints, and let $\mathcal{A}=\left\langle A ;<_{\mathcal{A}}\right\rangle$ and $\mathcal{B}=\langle B ;\langle\mathcal{B}\rangle$ be two countable models.
Then \mathcal{A} and \mathcal{B} are isomorphic, i.e. there is an order preserving bijection between A and B.

Proof: Note: A and B are infinite.
Choose an enumeration (no repeats)

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \\
& B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
\end{aligned}
$$

Define $\phi: A \rightarrow B$ recursively s.t. for all n :
$\left(\star_{n}\right)$ for all $i, j \leq n: \phi\left(a_{i}\right)<_{\mathcal{B}} \phi\left(a_{j}\right) \Leftrightarrow a_{i}<_{\mathcal{A}} a_{j}$

Suppose ϕ has been defined on $\left\{a_{1}, \ldots, a_{n}\right\}$ satisfying $\left(\star_{n}\right)$.

Let $\phi\left(a_{n+1}\right)=b_{m}$,
where $m>1$ is minimal s.t.

$$
\text { for all } i \leq n: b_{m}<_{\mathcal{B}} \phi\left(a_{i}\right) \Leftrightarrow a_{n+1}<_{\mathcal{A}} a_{i}
$$

i.e. the position of $\phi\left(a_{n+1}\right)$ relative to $\phi\left(a_{1}\right), \ldots, \phi\left(a_{n}\right)$
is the same as that of a_{n+1} relative to a_{1}, \ldots, a_{n}
(possible as $\mathcal{A}, \mathcal{B} \models Г$).
$\Rightarrow\left(\star_{n+1}\right)$ holds for a_{1}, \ldots, a_{n+1}
$\Rightarrow \phi$ is injective

And ϕ is surjective, by minimality of m.

14.8 Corollary

Γ is maximal consistent

Proof:
to show: $\operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})$ for any $\mathcal{A}, \mathcal{B}=\Gamma$ (by Remark 14.5)

By the Theorem of Löwenheim-Skolem (14.3), $\mathrm{Th}(\mathcal{A})$ and $\mathrm{Th}(\mathcal{B})$ have countable models, say \mathcal{A}_{0} and \mathcal{B}_{0}.
$\Rightarrow \operatorname{Th}\left(\mathcal{A}_{0}\right)=\operatorname{Th}(\mathcal{A})$ and $\operatorname{Th}\left(\mathcal{B}_{0}\right)=\operatorname{Th}(\mathcal{B})$

Theorem $14.7 \Rightarrow \mathcal{A}_{0}$ and \mathcal{B}_{0} are isomorphic

$$
\Rightarrow \operatorname{Th}\left(\mathcal{A}_{0}\right)=\operatorname{Th}\left(\mathcal{B}_{0}\right)
$$

$\Rightarrow \operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})$

Recall that \mathbf{R} is Dedekind complete:
for any subsets $A, B \subseteq \mathbf{R}$ with $A^{\prime}<^{\prime} B$
(i.e. $a<b$ for any $a \in A, b \in B$)
there is $\gamma \in \mathbf{R}$ with $A^{\prime} \leq \leq^{\prime}\{\gamma\}^{\prime} \leq{ }^{\prime} B$.
Q is not Dedekind complete:

$$
\text { take } \begin{aligned}
A & =\{x \in \mathbf{Q} \mid x<\pi\} \\
B & =\{x \in \mathbf{Q} \mid \pi<x\}
\end{aligned}
$$

14.9 Corollary

$\operatorname{Th}(\langle\mathbf{Q} ;<\rangle)=\operatorname{Th}(\langle\mathbf{R} ;<\rangle)$
In particular, the Dedekind completness of \mathbf{R} is not a first-order property,
i.e. there is no $\Delta \subseteq \operatorname{Sent}(\mathcal{L})$ such that for all \mathcal{L}-structures $\langle A ;<\rangle$,
$\langle A ;<\rangle \models \Delta$ iff $\langle A ;<\rangle$ is Dedekind complete.

15. Normal Forms

(a) Prenex Normal Form

A formula is in prenex normal form (PNF) if it has the form

$$
Q_{1} x_{i_{1}} Q_{2} x_{i_{2}} \cdots Q_{r} x_{i_{r}} \psi,
$$

where each Q_{i} is a quantifier
(i.e. either \forall or \exists), and where
ψ is a formula containing no quantifiers.

15.1 PNF-Theorem

Every $\phi \in \operatorname{Form}(\mathcal{L})$ is logically equivalent to an \mathcal{L}-formula in PNF.

Proof: Induction on ϕ
(working in the language with $\forall, \exists, \neg, \wedge$):
ϕ atomic: OK
$\phi=\neg \psi$,
say $\phi \leftrightarrow \neg Q_{1} x_{i_{1}} Q_{2} x_{i_{2}} \cdots Q_{r} x_{i_{r}} \chi$
Then $\phi \leftrightarrow Q_{1}^{-} x_{i_{1}} Q_{2}^{-} x_{i_{2}} \cdots Q_{r}^{-} x_{i_{r}} \neg \chi$,
where $Q^{-}=\exists$ if $Q=\forall$, and $Q^{-}=\forall$ if $Q=\exists$
$\phi=(\chi \wedge \rho)$ with χ, ρ in PNF
Note that $\vdash\left(\forall x_{j} \psi\left[x_{j} / x_{i}\right] \leftrightarrow \forall x_{i} \psi\right)$,
provided x_{j} does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ do not occur in ρ and vice versa.

But then, e.g. $(\forall x \alpha \wedge \exists y \beta) \leftrightarrow \forall x \exists y(\alpha \wedge \beta)$ etc. \square

(b) Skolem Normal Form

Recall: In the proof of CT, we introduced witnessing new constants for existential formulas such that
$\exists x \phi(x)$ is satisfiable iff $\phi(c)$ is satisfiable.

This way an $\exists x$ in front of a formula could be removed at the expense of a new constant.

Now we remove existential quantifiers 'inside' a formula at the expense of extra function symbols:

15.2 Observation:

Let $\phi=\phi(x, y)$ be an \mathcal{L}-formula with $x, y \in \operatorname{Free}(\phi)$. Let f be a new unary function symbol (not in $\mathcal{L})$.

Then $\forall x \exists y \phi(x, y)$ is satisfiable iff $\forall x \phi(x, f(x))$ is satisfiable.
(f is called a Skolem function for ϕ.)

Proof: ' \Leftarrow ': clear
' \Rightarrow ': Let \mathcal{A} be an \mathcal{L}-structure with $\mathcal{A} \models \forall x \exists y \phi(x, y)$
\Rightarrow for every $a \in A$ there is some $b \in A$ with $\phi(a, b)$

Interpret f by a function assigning to each $a \in$ A one such b (this uses the Axiom of Choice!).

Example: $\mathbf{R} \models \forall x \exists y\left(x \doteq y^{2} \vee x \doteq-y^{2}\right)$ - here $f(x)=\sqrt{|x|}$ will do.

15.3 Theorem

For every \mathcal{L}-formula ϕ
there is a formula ϕ^{\star}
(with new constant and function symbols)
having only universal quantifiers in its PNF such that

$$
\phi \text { is satisfiable iff } \phi^{\star} \text { is. }
$$

More precisely,
any \mathcal{L}-structure \mathcal{A}
can be made into a structure \mathcal{A}^{\star}
interpreting the new constant and function symbols
such that

$$
\mathcal{A} \models \phi \text { iff } \mathcal{A}^{\star} \models \phi^{\star} .
$$

