Oxford, MT2017

B1.1 Logic

Jonathan Pila

Slides by **J. Koenigsmann** with some small additions; further reference see: **D. Goldrei**, "Propositional and Predicate Calculus: A Model of Argument", Springer.

Introduction

- 1. What is mathematical logic about?
 - provide a uniform, unambiguous **language** for mathematics
 - make precise what a **proof** is
 - explain and guarantee exactness, rigor and certainty in mathematics
 - establish the **foundations** of mathematics

B1 (Foundations) = B1.1 (Logic) + B1.2 (Set theory)

N.B.: Course does not teach you to think logically, but it explores what it *means* to think logically

Lecture 1 - 1/6

2. Historical motivation

• 19th cent.:

need for conceptual foundation in analysis: what is the correct notion of **infinity, infinitesimal, limit, ...**

- attempts to formalize mathematics:
 - Frege's Begriffsschrift
 - *Cantor*'s **naive** set theory:
 - a set is any collection of objects
- led to **Russell's paradox**: consider the set $R := \{S \text{ set } | S \notin S\}$

 $R \in R \Rightarrow R \notin R$ contradiction $R \notin R \Rightarrow R \in R$ contradiction

→ fundamental crisis in the foundations of mathematics

Lecture 1 - 2/6

3. Hilbert's Program

- **1.** find a uniform (formal) **language** for all mathematics
- 2. find a complete system ofinference rules/ deduction rules
- **3.** find a complete system of mathematical **axioms**
- prove that the system 1.+2.+3. is consistent, i.e. does not lead to contradictions
- * **complete:** every mathematical sentence can be proved or disproved using 2. and 3.
- * 1., 2. and 3. should be finitary/effective/computable/algorithmic so, e.g., in 3. you can't take as axioms the system of all true sentences in mathematics
 * idea: any piece of information is of finte length

Lecture 1 - 3/6

4. Solutions to Hilbert's program

Step 1. is possible in the framework of
ZF = Zermelo-Fraenkel set theory or
ZFC = ZF + Axiom of Choice
(this is an empirical fact)
~→ B1.2 Set Theory HT 2017

Step 3. is not possible (\rightsquigarrow C1.2): Gödel's 1st Incompleteness Theorem: there is no effective axiomatization of arithmetic

Step 4. is not possible (\rightsquigarrow C1.2): Gödel's 2nd Incompleteness Theorem, (but..)

Lecture 1 - 4/6

5. Decidability

Step 3. of Hilbert's program fails: there is no effective axiomatization for the entire body of mathematics

But: many important parts of mathematics are completely and effectively axiomatizable, they are **decidable**, i.e. there is an *algorithm* = *program* = *effective procedure* deciding whether a sentence is true or false \rightarrow allows proofs by computer

Example: Th(C) = the **1st-order theory** of C = all *algebraic* properties of C:

Axioms = field axioms + all non-constant polynomials have a zero + the characteristic is 0

Every algebraic property of ${\bf C}$ follows from these axioms.

Similarly for $Th(\mathbf{R})$. \rightsquigarrow C1.1 Model Theory

Lecture 1 - 5/6

6. Why *mathematical* logic?

- Language and deduction rules are tailored for *mathematical objects* and mathematical ways of reasoning
 N.B.: Logic tells you what a proof *is*, not how to *find* one
- 2. The method is mathematical: we will develop logic as a calculus with sentences and formulas ⇒ Logic is itself a mathematical discipline, not meta-mathematics or philosophy, no ontological questions like what is a number?
- Logic has *applications* towards other areas of mathematics, e.g. Algebra, Topology, but also towards theoretical computer science

Lecture 1 - 6/6

PART I: Propositional Calculus

1. The language of propositional calculus

... is a very coarse language with limited expressive power

... allows you to break a complicated sentence down into its subclauses, but not any further

... will be refined in PART II *Predicate Calculus*, the true language of 1st order logic

... is nevertheless well suited for entering formal logic

Lecture 2 - 1/8

1.1 Propositional variables

- all mathematical disciplines use variables,
 e.g. x, y for real numbers
 or z, w for complex numbers
 or α, β for angles etc.
- in logic we introduce variables $p_0, p_1, p_2, ...$ for sentences (*propositions*)
- we don't care what these propositions say, only their *logical properties* count,
 i.e. whether they are *true* or *false* (when we use *variables* for real numbers, we also don't care about *particular* numbers)

Lecture 2 - 2/8

1.2 The alphabet of propositional calculus

consists of the following symbols:

the propositional variables $p_0, p_1, \ldots, p_n, \ldots$

negation \neg - the unary connective *not*

four binary connectives $\rightarrow, \wedge, \vee, \leftrightarrow$ implies, and, or and if and only if respectively

two punctuation marks (and) *left parenthesis* and *right parenthesis*

This alphabet is denoted by \mathcal{L} . Note that these are *abstract symbols*. Note also that we use \rightarrow , and not \Rightarrow .

Lecture 2 - 3/8

1.3 Strings

• A string (from \mathcal{L})

is any finite sequence of symbols from ${\cal L}$ placed one after the other - no gaps

• Examples

(i)
$$\to p_{17}()$$

(ii) $((p_0 \land p_1) \to \neg p_2)$
(iii) $)) \neg)p_{32}$

• The **length** of a string is the number of symbols in it.

So the strings in the examples have length 4, 10, 5 respectively.

(A propositional variable has length 1.)

• we now single out from all strings those which make grammatical sense (*formulas*)

Lecture 2 - 4/8

1.4 Formulas

The notion of a **formula of** \mathcal{L} is defined (*re-cursively*) by the following rules:

I. every propositional variable is a formula

II. if the string A is a formula then so is $\neg A$

III. if the strings A and B are both formulas then so are the strings

$(A \rightarrow B)$	read A implies B
$(A \wedge B)$	read A and B
$(A \lor B)$	read A or B
$(A \leftrightarrow B)$	read A if and only if B

IV. Nothing else is a formula,

i.e. a string ϕ is a formula if and only if ϕ can be obtained from propositional variables by finitely many applications of the *formation rules* II. and III.

Lecture 2 - 5/8

Examples

• the string $((p_0 \land p_1) \rightarrow \neg p_2)$ is a formula (Example (ii) in 1.3) *Proof:*

- Parentheses are important, e.g. $(p_0 \land (p_1 \rightarrow \neg p_2))$ is a different formula and $p_0 \land (p_1 \rightarrow \neg p_2)$ is no formula at all
- the strings $\rightarrow p_{17}()$ and $)) \neg)p_{32}$ from Example (i) and (iii) in 1.3 are no formulas this follows from the following Lemma:

Lemma If ϕ is a formula then - either ϕ is a propositional variable - or the first symbol of ϕ is \neg - or the first symbol of ϕ is (.

Proof: Induction on n := the length of ϕ :

n = 1: then ϕ is a propositional variable any formula obtained via formation rules (II. and III.) has length > 1.

Suppose the lemma holds for all formulas of length $\leq n$.

Let ϕ have length n+1

⇒ ϕ is not a propositional variable $(n + 1 \ge 2)$ ⇒ either ϕ is $\neg \psi$ for some formula ψ - so ϕ begins with \neg

or ϕ is $(\psi_1 \star \psi_2)$ for some $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$ and some formulas ψ_1 , ψ_2 - so ϕ begins with (. \Box

Lecture 2 - 7/8

The unique readability theorem

A formula can be constructed in only one way: For each formula ϕ **exactly one** of the following holds

(a) ϕ is p_i for some unique $i \in \mathbf{N}$;

(b) ϕ is $\neg \psi$ for some **unique** formula ψ ;

(c) ϕ is $(\psi \star \chi)$ for some **unique** pair of formulas ψ , χ and a **unique** binary connective $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$.

Proof: Problem sheet #1.

Lecture 2 - 8/8

2. Valuations

Propositional Calculus

- is designed to find the truth or falsity of a compound formula from its constituent parts
- it computes the truth values

 T ('true') or F ('false') of a formula φ,
 given the truth values assigned to
 the smallest constituent parts, i.e.
 the propositional variables occuring in φ

How this can be done is made precise in the following definition.

Lecture 3 - 1/9

2.1 Definition

1. A valuation v is a function

 $v : \{p_0, p_1, p_2, \ldots\} \to \{T, F\}$

2. Given a valuation v we extend v uniquely to a function

 \widetilde{v} : Form (\mathcal{L}) \rightarrow {T, F}

(Form (L) denotes the set of all formulas of L)

defined recursively as follows:

2.(i) If ϕ is a formula of length 1, i.e. a propositional variable, then $\tilde{v}(\phi) := v(\phi)$.

2.(ii) If \tilde{v} is defined for all formulas of length $\leq n$, let ϕ be a formula of length n + 1 (≥ 2).

Then, by the Unique Readability Theorem, either $\phi = \neg \psi$ for a unique ψ or $\phi = (\psi \star \chi)$ for a unique pair ψ, χ and a unique $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$,

where ψ and χ are formulas of lenght $\leq n$, so $\tilde{v}(\psi)$ and $\tilde{v}(\chi)$ are already defined.

Truth Tables

Define $\tilde{v}(\phi)$ by the following truth tables:

Negation

$$\begin{array}{c|c} \psi & \neg \psi \\ \hline T & F \\ \hline F & T \\ \end{array}$$

i.e. if $\tilde{v}(\psi) = T$ then $\tilde{v}(\neg \psi) = F$ and if $\tilde{v}(\psi) = F$ then $\tilde{v}(\neg \psi) = T$

Binary Connectives

ψ	χ	$\psi \to \chi$	$\psi \wedge \chi$	$\psi \lor \chi$	$\psi \leftrightarrow \chi$
T	T	T	T	T	T
T	F	F	F	T	F
\overline{F}	T	T	F	T	F
\overline{F}	F	T	F	F	T

so, e.g., if $\tilde{v}(\psi) = F$ and $\tilde{v}(\chi) = T$ then $\tilde{v}(\psi \lor \chi) = T$ etc.

Lecture 3 - 3/9

Remark: These truth tables correspond roughly to our ordinary use of the words 'not', 'if - then', 'and', 'or' and 'if and only if', except, perhaps, the truth table for implication (\rightarrow) .

2.2 Example

Construct the full truth table for the formula

$$\phi := ((p_0 \vee p_1) \to \neg (p_1 \wedge p_2))$$

 $\tilde{v}(\phi)$ only depends on $v(p_0), v(p_1)$ and $v(p_2)$.

p_o	p_1	p ₂	$(p_0 \vee p_1)$	$(p_1 \wedge p_2)$	$\neg(p_1 \wedge p_2)$	ϕ
T	T	$\mid T \mid$	T	T	F	F
T	T	F	T	F	T	T
T	F	$\mid T \mid$	T	F	T	T
T	F	F	T	F	T	T
F	T	T	T	T	F	F
\overline{F}	T	F	T	F	T	T
F	F	T	F	F	T	T
F	F	F	F	F	T	T

Lecture 3 - 4/9

2.3 Example Truth table for

 $\phi := ((p_0 \to p_1) \to (\neg p_1 \to \neg p_0))$

p_0	$ p_1 $	$(p_0 \rightarrow p_1)$	$\neg p_1$	$\neg p_0$	$(\neg p_1 \rightarrow \neg p_0)$	ϕ
T	$\mid T \mid$	T	F	F	T	T
T	F	F	T	F	F	T
\overline{F}	T	T	F	T	T	T
\overline{F}	F	T	T	T	T	T

Lecture 3 - 5/9

3. Logical Validity

3.1 Definition

- A valuation v satisfies a formula ϕ if $\tilde{v}(\phi) = T$
- If a formula φ is satisfied by *every* valuation then φ is **logically valid** or a **tautology** (e.g. Example 2.3, not Example 2.2) *Notation:* ⊨ φ
- If a formula ϕ is satisfied by *some* valuation then ϕ is **satisfiable** (e.g. Example 2.2)
- A formula φ is a logical consequence of a formula ψ if, for every valuation v:

if
$$\tilde{v}(\psi) = T$$
 then $\tilde{v}(\phi) = T$

Notation: $\psi \models \phi$

Lecture 3 - 6/9

3.2 Lemma $\psi \models \phi$ if and only if $\models (\psi \rightarrow \phi)$.

Proof: '
$$\Rightarrow$$
': Assume $\psi \models \phi$.
Let v be any valuation.
- If $\tilde{v}(\psi) = T$ then (by def.) $\tilde{v}(\phi) = T$,
so $\tilde{v}((\psi \rightarrow \phi)) = T$ by tt \rightarrow .
('tt *' stands for the truth table of the connective *)
- If $\tilde{v}(\psi) = F$ then $\tilde{v}((\psi \rightarrow \phi)) = T$ by tt \rightarrow .
Thus, for every valuation v , $\tilde{v}((\psi \rightarrow \phi)) = T$,
so $\models (\psi \rightarrow \phi)$.

' \Leftarrow ': Conversely, suppose $\models (\psi \rightarrow \phi)$. Let v be any valuation s.t. $\tilde{v}(\psi) = T$. Since $\tilde{v}((\psi \rightarrow \phi)) = T$, also $\tilde{v}(\phi) = T$ by tt \rightarrow . Hence $\psi \models \phi$.

More generally, we make the following

3.3 Definition Let Γ be any (possibly infinite) set of formulas and let ϕ be any formula. Then ϕ is a **logical consequence** of Γ if, for every valuation v:

if $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\phi) = T$

Notation: $\Gamma \models \phi$

3.4 Lemma

 $\Gamma \cup \{\psi\} \models \phi \text{ if and only if } \Gamma \models (\psi \rightarrow \phi).$

Proof: similar to the proof of previous lemma 3.2 - Exercise.

Lecture 3 - 8/9

3.5 Example

$$\models ((p_0 \rightarrow p_1) \rightarrow (\neg p_1 \rightarrow \neg p_0)) \quad (cf. Ex. 2.3)$$
Hence $(p_0 \rightarrow p_1) \models (\neg p_1 \rightarrow \neg p_0) \quad by 3.2$
Hence $\{(p_0 \rightarrow p_1), \neg p_1\} \models \neg p_0 \quad by 3.4$

3.6 Example

$$\phi \models (\psi \to \phi)$$

Proof:

If $\tilde{v}(\phi) = T$ then, by $tt \rightarrow \tilde{v}(\psi \rightarrow \phi) = T$ (no matter what $\tilde{v}(\psi)$ is).

Lecture 3 - 9/9

4. Logical Equivalence

4.1 Definition

Two formulas ϕ, ψ are **logically equivalent** if $\phi \models \psi$ and $\psi \models \phi$, i.e. if for *every* valuation $v, \tilde{v}(\phi) = \tilde{v}(\psi)$. *Notation:* $\phi \models = \mid \psi$

Exercise $\phi \models = \psi$ if and only if $\models (\phi \leftrightarrow \psi)$

4.2 Lemma

(i) For any formulas ϕ, ψ

$$(\phi \lor \psi) \models = \neg (\neg \phi \land \neg \psi)$$

(ii) Hence every formula is logically equivalent to one without ' \lor '.

Lecture 4 - 1/12

Proof:

(i) Either use truth tables or observe that, for any valuation v:

$$\begin{split} \widetilde{v}(\neg(\neg\phi\wedge\neg\psi)) &= F\\ \text{iff } \widetilde{v}((\neg\phi\wedge\neg\psi)) &= T \quad \text{by tt } \neg\\ \text{iff } \widetilde{v}(\neg\phi) &= \widetilde{v}(\neg\psi) = T \quad \text{by tt } \wedge\\ \text{iff } \widetilde{v}(\phi) &= \widetilde{v}(\psi) = F \quad \text{by tt } \neg\\ \text{iff } \widetilde{v}(\phi\vee\psi) &= F \quad \text{by tt } \vee \end{split}$$

(ii) Induction on the length of the formula ϕ :

Clear for lenght 1

For the induction step observe that

If
$$\psi \models = \psi'$$
 then $\neg \psi \models = \neg \psi'$

and

If $\phi \models = \phi'$ and $\psi \models = \psi'$ then $(\phi \star \psi) \models = (\phi' \star \psi')$, where \star is any binary connective. (Use (i) if $\star = \lor$)

Lecture 4 - 2/12

4.3 Some sloppy notation

We are only interested in formulas **up to logical equivalence**:

If A, B, C are formulas then

 $((A \lor B) \lor C)$ and $(A \lor (B \lor C))$

are different formulas, but logically equivalent. So here - up to logical equivalene bracketting doesn't matter. Hence

- Write $(A \lor B \lor C)$ or even $A \lor B \lor C$ instead.
- More generally, if A₁,..., A_n are formulas, write A₁ ∨ ... ∨ A_n or Vⁿ_{i=1} A_i for some (any) correctly bracketed version.
- Similarly $\bigwedge_{i=1}^{n} A_i$.

Lecture 4 - 3/12

4.4 Some logical equivalences

Let A, B, A_i be formulas. Then

1. $\neg (A \lor B) \models = (\neg A \land \neg B)$ So, inductively, $n \qquad n$

$$\neg \bigvee_{i=1}^{n} A_i \models = \bigwedge_{i=1}^{n} \neg A_i$$

This is called *De Morgan's Laws*.

- 2. like 1. with \lor and \land swapped everywhere
- 3. $(A \rightarrow B) \models = (\neg A \lor B)$
- 4. $(A \lor B) \models = ((A \to B) \to B)$
- 5. $(A \leftrightarrow B) \models = ((A \rightarrow B) \land (B \rightarrow A))$

Lecture 4 - 4/12

5. Adequacy of the Connectives

The connectives \neg (unary) and $\rightarrow, \land, \lor, \leftrightarrow$ (binary) are the *logical part* of our language for propositional calculus.

Question:

- Do we have enough connectives?
- Can we express everything which is logically conceivable using only these connectives?
- Does our language \mathcal{L} recover all potential truth tables?

Answer: yes

Lecture 4 - 5/12

5.1 Definition

(i) We denote by V_n the set of all functions $v : \{p_0, \dots, p_{n-1}\} \rightarrow \{T, F\}$ i.e. of all partial valuations, only assigning values to the first *n* propositional variables. Hence $\sharp V_n = 2^n$.

(ii) An *n*-ary truth function is a function

$$J: V_n \to \{T, F\}$$

There are precisely 2^{2^n} such functions.

(iii) If a formula $\phi \in \text{Form}(\mathcal{L})$ contains only prop. variables from the set $\{p_0, \ldots, p_{n-1}\}$ - write ' $\phi \in \text{Form}_n(\mathcal{L})$ ' then ϕ determines the truth function

i.e. J_{ϕ} is given by the truth table for ϕ .

5.2 Theorem

Our language \mathcal{L} is adequate,

i.e. for every n and every truth function $J : V_n \rightarrow \{T, F\}$ there is some $\phi \in Form_n(\mathcal{L})$ with $J_{\phi} = J$.

(In fact, we shall only use the connectives \neg, \land, \lor .)

Proof: Let $J: V_n \rightarrow \{T, F\}$ be any *n*-ary truth function.

If J(v) = F for all $v \in V_n$ take $\phi := (p_0 \land \neg p_0)$. Then, for all $v \in V_n$: $J_{\phi}(v) = \tilde{v}(\phi) = F = J(v)$.

Otherwise let $U := \{v \in V_n \mid J(v) = T\} \neq \emptyset$. For each $v \in U$ and each i < n define the formula

$$\psi_i^v := \begin{cases} p_i & \text{if } v(p_i) = T \\ \neg p_i & \text{if } v(p_i) = F \end{cases}$$

and let $\psi^v := \bigwedge_{i=0}^{n-1} \psi^v_i$.

Lecture 4 - 7/12

Then for any valuation $w \in V_n$ one has the following equivalence (\star) :

$$\widetilde{w}(\psi^{v}) = T \quad \text{iff} \quad \begin{array}{l} \text{for all } i < n :\\ \widetilde{w}(\psi^{v}_{i}) = T \\ \text{iff} \quad w = v \end{array} \quad (\text{by tt } \wedge) \\ \text{(by def. of } \psi^{v}_{i}) \\ \text{lower define } \phi := M \quad \phi^{v}_{i} \end{array}$$

Now define $\phi := \bigvee_{v \in U} \psi^v$.

Then for any valuation $w \in V_n$:

 $\widetilde{w}(\phi) = T$ iff for some $v \in U$: $\widetilde{w}(\psi^v) = T$ (by $\mathsf{tt} \lor)$ iff for some $v \in U$: w = v (by (\star)) iff $w \in U$ iff J(w) = T

Hence for all $w \in V_n$: $J_{\phi}(w) = J(w)$, i.e. $J_{\phi} = J$.

5.3 Definition

- (i) A formula which is a conjunction of p_i 's and $\neg p_i$'s is called a **conjunctive clause** - e.g. ψ^v in the proof of 5.2
- (ii) A formula which is a disjunction of conjunctive clauses is said to be in disjunctive normal form ('dnf')

- e.g. ϕ in the proof of 5.2

So we have, in fact, proved the following Corollary:

Lecture 4 - 9/12

5.4 Corollary - 'The dnf-Theorem' *For any truth function*

 $J: V_n \to \{T, F\}$

there is a formula $\phi \in Form_n(\mathcal{L})$ in dnf with $J_{\phi} = J$.

In particular, every formula is logically equivalent to one in dnf.

Lecture 4 - 10/12

5.5 Definition

Suppose S is a set of (truth-functional) connectives – so each $s \in S$ is given by some truth table.

- (i) Write $\mathcal{L}[S]$ for the language with connectives S instead of $\{\neg, \rightarrow, \land, \lor, \leftrightarrow\}$ and define Form $(\mathcal{L}[S])$ and Form $_n(\mathcal{L}[S])$ accordingly.
- (ii) We say that S is adequate (or truth functionally complete) if for all $n \ge 1$ and for all n-ary truth functions J there is some $\phi \in \operatorname{Form}_n(\mathcal{L}[S])$ with $J_{\phi} = J$.

5.6 Examples

- 1. $S = \{\neg, \land, \lor\}$ is adequate (Theorem 5.2)
- 2. Hence, by Lemma 4.2(i), $S = \{\neg, \land\}$ is adequate:

$$\begin{array}{c|c} \phi \lor \psi \models = & \neg(\neg \phi \land \neg \psi) \\ \text{Similarly, } S = \{\neg, \lor\} \text{ is adequate:} \\ \phi \land \psi \models = & \neg(\neg \phi \lor \neg \psi) \end{array}$$

- 3. Can express \lor in terms of \rightarrow , so $\{\neg, \rightarrow\}$ is adequate (Problem sheet $\sharp 2$).
- 4. $S = \{ \lor, \land, \rightarrow \}$ is **not** adequate, because any $\phi \in \text{Form}(\mathcal{L}[S])$ has T in the top row of tt ϕ , so no such ϕ gives $J_{\phi} = J_{\neg p_0}$.
- 5. There are precisely two binary connectives, say \uparrow and \downarrow such that $S = \{\uparrow\}$ and $S = \{\downarrow\}$ are adequate.

Lecture 4 - 12/12
6. A deductive system for propositional calculus

- We have indtroduced '*logical consequence*':
 Γ ⊨ φ − whenever (each formula of) Γ is true so is φ
- But we don't know yet how to give an actual proof of φ from the hypotheses Γ.
- A **proof** should be a finite sequence $\phi_1, \phi_2, \ldots, \phi_n$ of statements such that
 - either $\phi_i \in \Gamma$
 - or ϕ_i is some **axiom** (which should *clearly* be true)
 - or ϕ_i should follow from previous ϕ_j 's by some **rule of inference**
 - AND $\phi = \phi_n$

Lecture 5 - 1/8

6.1 Definition

Let $\mathcal{L}_0 := \mathcal{L}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the **system** L_0 consists of the following axioms and rules:

Axioms

An **axiom** of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$:

A1 $(\alpha \rightarrow (\beta \rightarrow \alpha))$

A2 (((
$$\alpha \rightarrow (\beta \rightarrow \gamma)$$
) \rightarrow (($\alpha \rightarrow \beta$) \rightarrow ($\alpha \rightarrow \gamma$)))

A3
$$((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$$

Rules of inference Only one: **modus ponens** (for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$) **MP** From α and $(\alpha \rightarrow \beta)$ infer β .

Lecture 5 - 2/8

6.2 Definition

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ we say that α is **deducible** (or **provable**) from the hypotheses Γ if there is a finite sequence $\alpha_1, \ldots, \alpha_m \in \text{Form}(\mathcal{L}_0)$ such that for each $i = 1, \ldots, m$ either

(a) α_i is an axiom, or (b) $\alpha_i \in \Gamma$, or (c) there are j < k < i such that α_i follows from α_j, α_k by MP, i.e. $\alpha_j = (\alpha_k \to \alpha_i)$ or $\alpha_k = (\alpha_j \to \alpha_i)$ AND

(d) $\alpha_m = \alpha$.

The sequence $\alpha_1, \ldots, \alpha_m$ is then called a **proof** or **deduction** or **derivation** of α from Γ .

Write $\Gamma \vdash \alpha$.

If $\Gamma = \emptyset$ write $\vdash \alpha$ and say that α is a **theorem** (of the system L_0).

Lecture 5 - 3/8

6.3 Example For any $\phi \in Form(\mathcal{L}_0)$

 $(\phi
ightarrow \phi)$

is a theorem of L_0 .

Proof:

$$\alpha_{1} (\phi \rightarrow (\phi \rightarrow \phi))$$
[A1 with $\alpha = \beta = \phi$]

$$\alpha_{2} (\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi))$$
[A1 with $\alpha = \phi, \beta = (\phi \rightarrow \phi)$]

$$\alpha_{3} ((\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))))$$
[A2 with $\alpha = \phi, \beta = (\phi \rightarrow \phi), \gamma = \phi$]

$$\alpha_{4} ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$$
[MP α_{2}, α_{3}]

$$\alpha_{5} (\phi \rightarrow \phi)$$
[MP α_{1}, α_{4}]

Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \to \phi)$ in L_0 .

6.4 Example

For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$:

$$\{\phi,\neg\phi\}\vdash\psi$$

Proof:

$$\alpha_{1} (\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi))$$
[A1 with $\alpha = \neg \phi, \beta = \neg \psi$]

$$\alpha_{2} \neg \phi [\in \Gamma]$$

$$\alpha_{3} (\neg \psi \rightarrow \neg \phi) [MP \alpha_{1}, \alpha_{2}]$$

$$\alpha_{4} ((\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi))$$
[A3 with $\alpha = \phi, \beta = \psi$]

$$\alpha_{5} (\phi \rightarrow \psi) [MP \alpha_{3}, \alpha_{4}]$$

$$\alpha_{6} \phi [\in \Gamma]$$

$$\alpha_{7} \psi [MP \alpha_{5}, \alpha_{6}]$$

6.5 The Soundness Theorem for *L*₀

 L_0 is **sound**, i.e. for any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha \in Form(\mathcal{L}_0)$:

if $\Gamma \vdash \alpha$ then $\Gamma \models \alpha$.

In particular, any theorem of L_0 is a tautology.

Proof:

Assume $\Gamma \vdash \alpha$ and let $\alpha_1, \alpha_2, \ldots, \alpha_m = \alpha$ be a deduction of α in L_0 .

Let v be any valuation such that $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$.

We have to show that $\tilde{v}(\alpha) = T$.

We show by induction on $i \leq m$ that

$$\widetilde{v}(\alpha_1) = \ldots = \widetilde{v}(\alpha_i) = T \quad (\star)$$

Lecture 5 - 6/8

i = 1

either α_1 is an axiom, so $\tilde{v}(\alpha_1) = T$ or $\alpha_1 \in \Gamma$, so, by hypothesis, $\tilde{v}(\alpha_1) = T$.

Induction step

Suppose (*) is true for some i < m. Consider α_{i+1} .

Either α_{i+1} is an axiom or $\alpha_{i+1} \in \Gamma$, so $\tilde{v}(\alpha_{i+1}) = T$ as above,

or else there are $j \neq k < i + 1$ such that $\alpha_j = (\alpha_k \rightarrow \alpha_{i+1}).$

By induction hypothesis

 $\tilde{v}(\alpha_k) = \tilde{v}(\alpha_j) = \tilde{v}((\alpha_k \to \alpha_{i+1})) = T.$ But then, by tt \to , $\tilde{v}(\alpha_{i+1}) = T$ (since $T \to F$ is F).

Lecture 5 - 7/8

For the proof of the converse

Completeness Theorem

If $\Gamma \models \alpha$ then $\Gamma \vdash \alpha$.

we first prove

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$:

if $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Lecture 5 - 8/8

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$:

if $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Proof:

We prove by induction on m:

if $\alpha_1, \ldots, \alpha_m$ is derivable in L_0 from the hypotheses $\Gamma \cup \{\alpha\}$ **then** for all $i \leq m$ $(\alpha \rightarrow \alpha_i)$ is derivable in L_0 from the hypotheses Γ .

m=1

Either α_1 is an Axiom or $\alpha_1 \in \Gamma \cup \{\alpha\}$.

Lecture 6 - 1/8

Case 1: α_1 is an Axiom Then

1	α_1	[Axiom]
2	$(\alpha_1 \rightarrow (\alpha \rightarrow \alpha_1))$	[Instance of A1]
3	$(\alpha \rightarrow \alpha_1)$	[MP 1,2]

is a derivation of $(\alpha \rightarrow \alpha_1)$ from hypotheses \emptyset .

Note that if $\Delta \vdash \psi$ and $\Delta \subseteq \Delta'$, then obviously $\Delta' \vdash \psi$.

Thus $(\alpha \rightarrow \alpha_1)$ is derivable in L_0 from hypotheses Γ .

Case 2: $\alpha_1 \in \Gamma \cup \{\alpha\}$ If $\alpha_1 \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma$ ').

If $\alpha_1 = \alpha$, then, by Example 6.3, $\vdash (\alpha \rightarrow \alpha_1)$, hence $\Gamma \vdash (\alpha \rightarrow \alpha_1)$.

Lecture 6 - 2/8

Induction Step

IH: Suppose result is true for derivations of length $\leq m$.

Let $\alpha_1, \ldots, \alpha_{m+1}$ be a derivation in L_0 from $\Gamma \cup \{\alpha\}$.

Then either α_{m+1} is an axiom or $\alpha_{m+1} \in \Gamma \cup \{\alpha\}$ – in these cases proceed as above, even without IH.

Or α_{m+1} is obtained by MP from some earlier α_j, α_k , i.e. there are j, k < m + 1 such that $\alpha_j = (\alpha_k \rightarrow \alpha_{m+1})$.

By IH, we have

and
$$\Gamma \vdash (\alpha \rightarrow \alpha_k)$$

 $\Gamma \vdash (\alpha \rightarrow \alpha_j),$
so $\Gamma \vdash (\alpha \rightarrow (\alpha_k \rightarrow \alpha_{m+1}))$

Lecture 6 - 3/8

Let
$$\beta_1, \ldots, \beta_r$$
 be a derivation in L_0 of $(\alpha \to \alpha_k) = \beta_r$ from Γ

and let $\gamma_1, \ldots, \gamma_s$ be a derivation in L_0 of $(\alpha \to (\alpha_k \to \alpha_{m+1})) = \gamma_s$ from Γ .

Then

$$\begin{array}{lll} 1 & \beta_{1} \\ \vdots & \vdots \\ r-1 & \beta_{r-1} \\ r & (\alpha \to \alpha_{k}) \\ r+1 & \gamma_{1} \\ \vdots & \vdots \\ r+s-1 & \gamma_{s-1} \\ r+s & (\alpha \to (\alpha_{k} \to \alpha_{m+1})) \\ r+s+1 & ((\alpha \to (\alpha_{k} \to \alpha_{m+1})) \to \\ & ((\alpha \to \alpha_{k}) \to (\alpha \to \alpha_{m+1}))) & [A2] \\ r+s+2 & ((\alpha \to \alpha_{k}) \to (\alpha \to \alpha_{m+1})) & [MP r+s, r+s+1] \\ r+s+3 & (\alpha \to \alpha_{m+1}) & [MP r, r+s+2] \end{array}$$

is a derivation of $(\alpha \rightarrow \alpha_{m+1})$ in L_0 from Γ . \Box Lecture 6 - 4/8

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP.
 So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise **algorithm** for converting any derivation showing $\Gamma \cup \{\alpha\} \vdash \beta$ into one showing $\Gamma \vdash (\alpha \rightarrow \beta)$.
- Converse is easy:

If $\Gamma \vdash (\alpha \rightarrow \beta)$ then $\Gamma \cup \{\alpha\} \vdash \beta$. *Proof:*

:	:	derivation from Γ
r	$\alpha \rightarrow \beta$	
r+1	lpha	$[\in \Gamma \cup \{\alpha\}]$
r+2	eta	[MP r, r+1]

Lecture 6 - 5/8

6.8 Example of use of DT

If $\Gamma \vdash (\alpha \rightarrow \beta)$ and $\Gamma \vdash (\beta \rightarrow \gamma)$ then $\Gamma \vdash (\alpha \rightarrow \gamma)$.

Proof:

By the deduction theorem ('DT'), it suffices to show that $\Gamma \cup \{\alpha\} \vdash \gamma$.

:	:	proof from Γ
r	$(\alpha \rightarrow \beta)$	
r+1	÷	
:	:	proof from Γ
r+s	$(\beta ightarrow \gamma)$	
r+s+1	lpha	$[\in \Gamma \cup \{\alpha\}]$
r+s+2	eta	[MP r, r+s+1]
r+s+3	γ	[MP r+s, r+s+2]

From now on we may treat DT as an additional inference rule in L_0 .

Lecture 6 - 6/8

6.9 Definition

The **sequent calculus** SQ is the system where a **proof** (or **derivation**) of $\phi \in \text{Form}(\mathcal{L}_0)$ from $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is a finite sequence of **sequents**, i.e. of expressions of the form

 $\Delta \vdash_{SQ} \psi$

with $\Delta \subseteq \operatorname{Form}(\mathcal{L}_0)$ and $\Gamma \vdash_{SQ} \phi$ as last sequent.

Sequents may be formed according to the following rules

Ass: if $\psi \in \Delta$ then infer $\Delta \vdash_{SQ} \psi$

- **MP:** from $\Delta \vdash_{SQ} \psi$ and $\Delta' \vdash_{SQ} (\psi \to \chi)$ infer $\Delta \cup \Delta' \vdash_{SQ} \chi$
- **DT:** from $\Delta \cup \{\psi\} \vdash_{SQ} \chi$ infer $\Delta \vdash_{SQ} (\psi \to \chi)$
- **PC:** from $\Delta \cup \{\neg \psi\} \vdash_{SQ} \chi$ and $\Delta' \cup \{\neg \psi\} \vdash_{SQ} \neg \chi$ infer $\Delta \cup \Delta' \vdash_{SQ} \psi$

'PC' stands for *proof by contradiction*' **Note:** no axioms.

Lecture 6 - 7/8

6.10 Example of a proof in SQ

$$\begin{array}{ll} 1 & \neg\beta \vdash_{SQ} \neg\beta & [Ass] \\ 2 & (\neg\beta \rightarrow \neg\alpha) \vdash_{SQ} (\neg\beta \rightarrow \neg\alpha) & [Ass] \\ 3 & (\neg\beta \rightarrow \neg\alpha), \neg\beta \vdash_{SQ} \neg\alpha & [MP \ 1,2] \\ 4 & \alpha, \neg\beta \vdash_{SQ} \alpha & [Ass] \\ 5 & (\neg\beta \rightarrow \neg\alpha), \alpha \vdash_{SQ} \beta & [PC \ 3,4] \\ 6 & (\neg\beta \rightarrow \neg\alpha) \vdash_{SQ} (\alpha \rightarrow \beta) & [DT \ 5] \\ 7 & \vdash_{SQ} ((\neg\beta \rightarrow \neg\alpha) \rightarrow (\alpha \rightarrow \beta)) & [DT \ 6] \end{array}$$

We'd better write ' $\Gamma \vdash_{L_0} \phi$ ' for ' $\Gamma \vdash \phi$ in L_0 '.

6.11 Theorem

 L_0 and SQ are equivalent: for all Γ, ϕ

$$\Gamma \vdash_{L_0} \phi \text{ iff } \Gamma \vdash_{SQ} \phi.$$

Proof: Exercise

Lecture 6 - 8/8

7. Consistency, Completeness and Compactness

7.1 Definition

Let $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$. Γ is said to be **consistent** (or \mathcal{L}_0 -consistent) if for *no* formula α both $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$.

Otherwise Γ is **inconsistent**.

E.g. \emptyset is consistent: by soundness theorem, α and $\neg \alpha$ are never simultaneously true.

7.2. Lemma

 $\Gamma \cup \{\neg \phi\}$ is inconsistent iff $\Gamma \vdash \phi$. (In part., if $\Gamma \not\vdash \phi$ then $\Gamma \cup \{\neg \phi\}$ is consistent). Proof: ' \Leftarrow ':

 $\begin{array}{ccc} \Gamma \vdash \phi \Rightarrow & \Gamma \cup \{\neg \phi\} \vdash \phi \\ \Gamma \cup \{\neg \phi\} \vdash \neg \phi \end{array} \end{array} \right\} \Rightarrow \begin{array}{c} \Gamma \cup \{\neg \phi\} \\ \text{is inconsistent} \end{array} \\ \begin{array}{c} `\Rightarrow `: \\ \Gamma \cup \{\neg \phi\} \vdash \alpha \\ \Gamma \cup \{\neg \phi\} \vdash \neg \alpha \end{array} \right\} \Rightarrow_{6.11} \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash_{SQ} \alpha \\ \Gamma \cup \{\neg \phi\} \vdash \neg \alpha \end{array} \right\} \Rightarrow_{6.11} \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash_{SQ} \alpha \\ \Gamma \cup \{\neg \phi\} \vdash \neg \alpha \end{array} \right\}$

$$\Rightarrow_{\mathsf{PC}} \ \mathsf{\Gamma} \vdash_{SQ} \phi \ \Rightarrow_{6.11} \ \mathsf{\Gamma} \vdash \phi$$

Lecture 7 - 1/9

7.3 Lemma

Suppose Γ is consistent and $\Gamma \vdash \phi$. Then $\Gamma \cup \{\phi\}$ is consistent.

Proof: Suppose not, i.e. for some α

$$\begin{array}{c} \Gamma \cup \{\phi\} \vdash \alpha \\ \Gamma \cup \{\phi\} \vdash \neg \alpha \end{array} \end{array} \right\} \Rightarrow_{\mathsf{DT}} \begin{array}{c} \Gamma \vdash (\phi \to \alpha) \\ \Gamma \vdash (\phi \to \neg \alpha) \end{array} \right\} \begin{array}{c} \Gamma \vdash \phi \\ \Rightarrow \mathsf{MP} \end{array} \\ \\ \Rightarrow \begin{array}{c} \Gamma \vdash \alpha \\ \Gamma \vdash \neg \alpha \end{array} \end{array}$$

7.4 Definition

 $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is **maximal consistent** if (i) Γ is consistent, and (ii) for *every* ϕ , either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.

Note: This is equivalent to saying that for every ϕ , if $\Gamma \cup \{\phi\}$ is consistent then $\Gamma \vdash \phi$. *Proof:* Exercise

Lecture 7 - 2/9

7.5 Lemma

Suppose Γ is maximal consistent. Then for every $\psi, \chi \in Form(\mathcal{L}_0)$ (a) $\Gamma \vdash \neg \psi$ iff $\Gamma \not\vdash \psi$ (b) $\Gamma \vdash (\psi \rightarrow \chi)$ iff either $\Gamma \vdash \neg \psi$ or $\Gamma \vdash \chi$. Proof:

(a) '⇒': by consistency
'⇐': by maximality

(b) '⇒': Suppose
$$\Gamma \not\vdash \neg \psi$$
 and $\Gamma \not\vdash \chi$
 $\Rightarrow \Gamma \vdash \psi$ and $\Gamma \vdash \neg \chi$
 $\Gamma \vdash (\psi \rightarrow \chi) \Rightarrow_{\mathsf{MP}} \Gamma \vdash \chi$)

'⇐': Suppose Γ⊢¬
$$\psi$$

Γ⊢(¬ ψ → (ψ → χ)) - Problems \sharp 2, (5)(i)
⇒_{MP} Γ⊢(ψ → χ)

Suppose
$$\Gamma \vdash \chi$$

 $\Gamma \vdash (\chi \rightarrow (\psi \rightarrow \chi))$ - Axiom A1
 $\Rightarrow_{\mathsf{MP}} \Gamma \vdash (\psi \rightarrow \chi)$

Lecture 7 - 3/9

7.6 Theorem

Suppose Γ is maximal consistent. Then Γ is satisfiable.

Proof:

For each i, $\Gamma \vdash p_i$ or $\Gamma \vdash \neg p_i$ (by maximality), but not both (by consistency)

Define a valuation \boldsymbol{v} by

$$v(p_i) = \begin{cases} T & \text{if } \Gamma \vdash p_i \\ F & \text{if } \Gamma \vdash \neg p_i \end{cases}$$

Claim: for all $\phi \in \text{Form}(\mathcal{L}_0)$:

$$\widetilde{v}(\phi) = T \text{ iff } \Gamma \vdash \phi$$

Proof by induction on the length n of ϕ :

n=1:

Then $\phi = p_i$ for some *i*, and so, by def. of *v*,

$$\widetilde{v}(p_i) = T \text{ iff } \Gamma \vdash p_i.$$

IH: Claim true for all $i \leq n$.

Now assume length $(\phi) = n+1$

Case 1:
$$\phi = \neg \psi$$
 (\Rightarrow length (ψ) = n)
 $\widetilde{v}(\phi) = T$ iff $\widetilde{v}(\psi) = F$ tt \neg
iff $\Gamma \not\vdash \psi$ IH
iff $\Gamma \vdash \neg \psi$ 7.5(a)
iff $\Gamma \vdash \phi$

Case 2:
$$\phi = (\psi \to \chi)$$

(\Rightarrow length (ψ), length (χ) \leq n)
 $\tilde{v}(\phi) = T$ iff $\tilde{v}(\psi) = F$ or $\tilde{v}(\chi) = T$ tt \rightarrow
iff $\Gamma \not\vdash \psi$ or $\Gamma \vdash \chi$ IH
iff $\Gamma \vdash \neg \psi$ or $\Gamma \vdash \chi$ 7.5(a)
iff $\Gamma \vdash (\psi \to \chi)$ 7.5(b)
iff $\Gamma \vdash \phi$

So $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$, i.e. v satisfies Γ .

Lecture 7 - 5/9

7.7 Theorem

Suppose Γ is consistent. Then there is a maximal consistent Γ' such that $\Gamma \subseteq \Gamma'$.

Proof:

 $Form(\mathcal{L}_0)$ is countable, say

$$Form(\mathcal{L}_0) = \{\phi_1, \phi_2, \phi_3, \ldots\}.$$

Construct consistent sets

$$\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \dots$$

as follows: $\Gamma_0 := \Gamma$.

Having constructed Γ_n consistently, let

$$\Gamma_{n+1} := \begin{cases} \Gamma_n \cup \{\phi_{n+1}\} & \text{if } \Gamma_n \vdash \phi_{n+1} \\ \Gamma_n \cup \{\neg \phi_{n+1}\} & \text{if } \Gamma_n \not\vdash \phi_{n+1} \end{cases}$$

Then Γ_{n+1} is consistent by 7.3 and 7.2.

Lecture 7 - 6/9

Now let $\Gamma' := \bigcup_{n=0}^{\infty} \Gamma_n$.

Then Γ' is consistent:

Any proof of $\Gamma' \vdash \alpha$ and $\Gamma' \vdash \neg \alpha$ would use only finitely many formulas from Γ' , so for some $n, \ \Gamma_n \vdash \alpha$ and $\Gamma_n \vdash \neg \alpha$ – contradicting the consistency of Γ_n .

Finally, Γ' is maximal (even in a stronger sense): for all n, either $\phi_n \in \Gamma'$ or $\neg \phi_n \in \Gamma'$. \Box

Note that the proof does not make use of Zorn's Lemma.

7.8 Corollary

If Γ is consistent then Γ is satisfiable.

Proof: 7.6 + 7.7 □

Lecture 7 - 7/9

7.9 The Completeness Theorem If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof:

Suppose $\Gamma \models \phi$, but $\Gamma \not\vdash \phi$.

⇒ by 7.2, $\Gamma \cup \{\neg \phi\}$ is consistent ⇒ by 7.8, there is some valuation v such that $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma \cup \{\neg \phi\}$ ⇒ $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$, but $\tilde{v}(\phi) = F$ ⇒ $\Gamma \not\models \phi$: contradiction. \Box

7.10 Corollary (7.9 Completeness + 6.5 Soundness)

 $\Gamma \models \phi \text{ iff } \Gamma \vdash \phi$

Lecture 7 - 8/9

7.11 The Compactness Theorem for L_0

 $\Gamma \subseteq Form(\mathcal{L}_0)$ is satisfiable iff every finite subset of Γ is satisfiable.

Proof: ' \Rightarrow ': obvious – if $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma' \subseteq \Gamma$.

'⇐':

Suppose every finite $\Gamma' \subseteq \Gamma$ is satisfiable, but Γ is not.

Then, by 7.8, Γ is inconsistent, i.e. $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$ for some α .

But then, for some finite $\Gamma' \subseteq \Gamma$: $\Gamma' \vdash \alpha$ and $\Gamma' \vdash \neg \alpha$ $\Rightarrow \Gamma' \models \alpha$ and $\Gamma' \models \neg \alpha$ (by soundness) $\Rightarrow \Gamma'$ not satisfiable: contradiction.

Lecture 7 - 9/9

PART II:

PREDICATE CALCULUS

so far:

- logic of the connectives $\neg, \land, \lor, \rightarrow, \leftrightarrow, \ldots$ (as used in mathematics)

- *smallest unit:* propositions

- *deductive calculus:* checking logical validity and computing truth tables

--> sound, complete, compact

now:

- look *more deeply into* the structure of propositions used in mathematics

- analyse grammatically correct use of *functions, relations, constants, variables* and *quantifiers*

- define *logical validity* in this refined language

- discover *axioms* and *rules of inference* (beyond those of propositional calculus) used in mathematical arguments

- prove: -- > sound, complete, compact

Lecture 8 - 1/7

8. The language of (first-order) predicate calculus

The language \mathcal{L}^{FOPC} consists of the following symbols:

Logical symbols

connectives: \rightarrow, \neg quantifier: \forall ('for all') variables: x_0, x_1, x_2, \ldots 3 punctuation marks: (), equality symbol: \doteq

non-logical symbols:

predicate (or relation) symbols: $P_n^{(k)}$ for $n \ge 0, k \ge 1$ ($P_n^{(k)}$ is a *k*-ary predicate symbol) function symbols: $f_n^{(k)}$ for $n \ge 0, k \ge 1$ ($f_n^{(k)}$ is a *k*-ary function symbol) constant symbols: c_n for $n \ge 0$

Lecture 8 - 2/7

8.1 Definition

(a) The **terms** of \mathcal{L}^{FOPC} are defined recursively as follows:

(i) Every variable is a term.

(ii) Every constant symbol is a term.

(iii) For each $n \ge 0, k \ge 1$, if t_1, \ldots, t_k are terms, so is the string

$$f_n^{(k)}(t_1,\ldots,t_k)$$

(b) An **atomic formula** of \mathcal{L}^{FOPC} is any string of the form

 $P_n^{(k)}(t_1,\ldots,t_k)$ or $t_1 \doteq t_2$

with $n \ge 0, k \ge 1$, and where all t_i are terms.

(c) The **formulas** of \mathcal{L}^{FOPC} are defined recursively as follows:

(i) Any atomic formula is a formula

(ii) If ϕ, ψ are formulas, then so are $\neg \phi$ and $(\phi \rightarrow \psi)$

(iii) If ϕ is a formula, then for any variable x_i so is $\forall x_i \phi$

Lecture 8 - 3/7

8.2 Examples

 $c_0; c_3; x_5; f_3^{(1)}(c_2); f_4^{(2)}(x_1, f_3^{(1)}(c_2))$ are all terms

 $f_2^{(3)}(x_1, x_2)$ is *not* a term (wrong arity)

 $P_0^{(3)}(x_4, c_0, f_3^{(2)}(c_1, x_2))$ and $f_1^{(2)}(c_5, c_6) \doteq x_{11}$ are atomic formulas

 $f_3^{(1)}(c_2)$ is a term, but no formula

 $\forall x_1 f_2^{(2)}(x_1, c_7) \doteq x_2$ is a formula, not atomic

 $\forall x_2 P_0^{(1)}(x_3)$ is a formula

8.3 Remark

We have **unique readability** for terms, for atomic formulas, and for formulas.

Lecture 8 - 4/7

8.4 Interpretations and logical validity for \mathcal{L}^{FOPC} (Informal discussion)

(A) Consider the formula

$$\phi_1: \forall x_1 \forall x_2 (x_1 \doteq x_2 \rightarrow f_5^{(1)}(x_1) \doteq f_5^{(1)}(x_2))$$

Given that \doteq is to be interpreted as equality, \forall as 'for all', and the $f_n^{(k)}$ as actual functions (in k arguments), ϕ_1 should always be true. We shall write

 $\models \phi_1$

and say ' ϕ_1 is **logically valid**'.

(B) Consider the formula

 $\phi_2: \forall x_1 \forall x_2 (f_7^{(2)}(x_1, x_2) \doteq f_7^{(2)}(x_2, x_1) \to x_1 \doteq x_2)$

Then ϕ_2 may be false or true depending on the situation:

Lecture 8 - 5/7

- If we interpret $f_7^{(2)}$ as + on N, ϕ_2 becomes false, e.g. 1+2=2+1, but $1 \neq 2$. So in this interpretation, ϕ_2 is false and $\neg \phi_2$ is true. Write

$$\langle \mathbf{N}, + \rangle \models \neg \phi_2$$

- If we interpret $f_7^{(2)}$ as - on R, ϕ_2 becomes true: if $x_1 - x_2 = x_2 - x_1$, then $2x_1 = 2x_2$, and hence $x_1 = x_2$. So

$$\langle \mathbf{R}, - \rangle \models \phi_2$$

Lecture 8 - 6/7

8.5 Free and bound variables (Informal discussion)

There is a further complication: Consider the formula

$$\phi_3: \forall x_0 P_0^{(2)}(x_1, x_0)$$

Under the interpretation $\langle \mathbf{N}, \leq \rangle$ you cannot tell whether $\langle \mathbf{N}, \leq \rangle \models \phi_3$:

- if we put $x_1 = 0$ then yes - if we put $x_1 = 2$ then no.

So it depends on the value we assign to x_1 (like in propositional calculus: truth value of $p_0 \wedge p_1$ depends on the valuation).

In ϕ_3 we *can* assign a value to x_1 because x_1 occurs **free** in ϕ_3 .

For x_0 , however, it makes no sense to assign a particular value; because x_0 is **bound** in ϕ_3 by the quantifier $\forall x_0$.

Lecture 8 - 7/7

9. Interpretations and Assignments

We refer to a subset $\mathcal{L} \subseteq \mathcal{L}^{FOPC}$ containing all the logical symbols, but possibly only some non-logical as a **language** (or **first-order language**).

9.1 Definition Let \mathcal{L} be a language. An interpretation of \mathcal{L} is an \mathcal{L} -structure $\mathcal{A} :=$

 $\langle A; (f_{\mathcal{A}})_{f \in \mathsf{Fct}(\mathcal{L})}; (P_{\mathcal{A}})_{P \in \mathsf{Pred}(\mathcal{L})}; (c_{\mathcal{A}})_{c \in \mathsf{Const}(\mathcal{L})} \rangle,$ i.e.

- A is a non-empty set, the **domain** of \mathcal{A} , - for each k-ary function symbol $f = f_n^{(k)} \in \mathcal{L}$, $f_{\mathcal{A}} : A^k \to A$ is a function - for each k-ary predicate symbol $P = P_n^{(k)} \in \mathcal{L}$, $P_{\mathcal{A}}$ is a k-ary relation on A, i.e. $P_{\mathcal{A}} \subseteq A^k$ (write $P_{\mathcal{A}}(a_1, \ldots, a_k)$ for $(a_1, \ldots, a_k) \in P_{\mathcal{A}}$) - for each $c \in \text{Const}(\mathcal{L})$: $c_{\mathcal{A}} \in A$.

Lecture 9 - 1/8

9.2 Definition

Let \mathcal{L} be a language and let $\mathcal{A} = \langle A; \ldots \rangle$ be an \mathcal{L} -structure.

(1) An assignment in \mathcal{A} is a function

 $v: \{x_0, x_1, \ldots\} \to A$

(2) v determines an assignment

$$\widetilde{v} = \widetilde{v}_{\mathcal{A}}$$
: Terms(\mathcal{L}) $\to A$

defined recursively as follows:

(i) $\tilde{v}(x_i) = v(x_i)$ for all i = 0, 1, ...(ii) $\tilde{v}(c) = c_{\mathcal{A}}$ for each $c \in \text{Const}(\mathcal{L})$ (iii) $\tilde{v}(f(t_1, ..., t_k)) = f_{\mathcal{A}}(\tilde{v}(t_1), ..., \tilde{v}(t_k))$ for each $f = f_n^{(k)} \in \text{Fct}(\mathcal{L})$, where the $\tilde{v}(t_i)$ are already defined.

(3) v determines a valuation

$$\widetilde{v} = \widetilde{v}_{\mathcal{A}}$$
: Form $(\mathcal{L}) \to \{T, F\}$

as follows:

Lecture 9 - 2/8

(i) for atomic formulas $\phi \in \text{Form}(\mathcal{L})$: - for each $P = P_n^{(k)} \in \text{Pred}(\mathcal{L})$ and for all $t \in \text{Term}(\mathcal{L})$

$$\widetilde{v}(P(t_1,\ldots,t_k)) = \begin{cases} T & \text{if } P_{\mathcal{A}}(\widetilde{v}(t_1),\ldots,\widetilde{v}(t_k)) \\ F & \text{otherwise} \end{cases}$$

- for all $t_1, t_2 \in \text{Term}(\mathcal{L})$:

$$\widetilde{v}(t_1 \doteq t_2) = \begin{cases} T & \text{if } \widetilde{v}(t_1) = \widetilde{v}(t_2) \\ F & \text{otherwise} \end{cases}$$

(ii) for arbitrary formulas $\phi \in \text{Form}(\mathcal{L})$ recursively:

-
$$\widetilde{v}(\neg \psi) = T$$
 iff $\widetilde{v}(\psi) = F$

-
$$\tilde{v}(\psi \to \chi) = T$$
 iff $\tilde{v}(\psi) = F$ or $\tilde{v}(\chi) = T$

- $\tilde{v}(\forall x_i\psi) = T$ iff $\tilde{v}^{\star}(\psi) = T$ for all assignments v^{\star} agreeing with v except possibly at x_i .

Notation: Write $\mathcal{A} \models \phi[v]$ for $\tilde{v}_{\mathcal{A}}(\phi) = T$, and say ' ϕ is true in \mathcal{A} under the assignment $v = v_{\mathcal{A}}$.'

Lecture 9 - 3/8

9.3 Some abbreviations

9.4 Lemma

For any $\mathcal L\text{-structure}\ \mathcal A$ and any assignment v in $\mathcal A$ one has

$$\begin{array}{lll} \mathcal{A} \models (\alpha \lor \beta)[v] & \text{iff} & \mathcal{A} \models \alpha[v] \text{ or } \mathcal{A} \models \beta[v] \\ \mathcal{A} \models (\alpha \land \beta)[v] & \text{iff} & \mathcal{A} \models \alpha[v] \text{ and } \mathcal{A} \models \beta[v] \\ \mathcal{A} \models (\alpha \leftrightarrow \beta)[v] & \text{iff} & \tilde{v}(\alpha) = \tilde{v}(\beta) \\ \mathcal{A} \models \exists x_i \phi[v] & \text{iff} & \text{for some assignment} \\ v^* \text{ agreeing with } v \\ \text{except possibly at } x_i \\ \mathcal{A} \models \phi[v^*] \end{array}$$

Proof: easy

Lecture 9 - 4/8
9.5 Example

Let f be a binary function symbol, let ' $\mathcal{L} = \{f\}$ ' (need only list non-logical symbols), consider $\mathcal{A} = \langle \mathbf{Z}; \cdot \rangle$ as \mathcal{L} -structure, let v be the assignment $v(x_i) = i (\in \mathbf{Z})$ for i = 0, 1, ..., and let

$$\phi = \forall x_0 \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)$$

Then

$$\begin{array}{l} \mathcal{A} \models \phi[v] \\ \text{iff for all } v^{\star} \text{ with } v^{\star}(x_i) = i \text{ for } i \neq 0 \\ \mathcal{A} \models \forall x_1(f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)[v^{\star}] \\ \text{iff for all } v^{\star \star} \text{ with } v^{\star \star}(x_i) = i \text{ for } i \neq 0, 1 \end{array}$$

$$\mathcal{A} \models (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)[v^{\star\star}]$$

- iff for all $v^{\star\star}$ with $v^{\star\star}(x_i) = i$ for $i \neq 0, 1$ $v^{\star\star}(x_0) \cdot v^{\star\star}(x_2) = v^{\star\star}(x_1) \cdot v^{\star\star}(x_2)$ implies $v^{\star\star}(x_0) = v^{\star\star}(x_1)$
- iff for all $a, b \in \mathbb{Z}$, $a \cdot 2 = b \cdot 2$ implies a = b, which is true.

So
$$\mathcal{A} \models \phi[v]$$

Lecture 9 - 5/8

However, if $v'(x_i) = 0$ for all *i*, then would have finished with

... iff for all $a, b \in \mathbb{Z}$, $a \cdot 0 = b \cdot 0$ implies a = b, which is false. So $\mathcal{A} \not\models \phi[v']$.

9.6 Example

Let P be a unary predicate symbol, $\mathcal{L} = \{P\}$, \mathcal{A} an \mathcal{L} -structure, v any assignment in \mathcal{A} , and $\phi = ((\forall x_0 P(x_0) \rightarrow P(x_1)).$

Then $\mathcal{A} \models \phi[v]$.

Proof:

 $\mathcal{A} \models \phi[v]$ iff

 $\mathcal{A} \models \forall x_0 P(x_0)[v] \text{ implies } \mathcal{A} \models P(x_1)[v].$

Now suppose $\mathcal{A} \models \forall x_0 P(x_0)[v]$. Then for all v^* which agree with v except possibly at x_0 , $P(x_0)[v^*]$.

In particular, for $v^*(x_i) = \begin{cases} v(x_i) & \text{if } i \neq 0 \\ v(x_1) & \text{if } i = 0 \end{cases}$ we have $P_{\mathcal{A}}(v^*(x_0))$, and hence $P_{\mathcal{A}}(v(x_1))$, i.e. $P(x_1)[v]$.

Lecture 9 - 6/8

9.7 Definition

Let \mathcal{L} be any first-order language.

- An \mathcal{L} -formula ϕ is **logically valid** (' $\models \phi$ ') if $\mathcal{A} \models \phi[v]$ for all \mathcal{L} -structures \mathcal{A} and for all assignments v in \mathcal{A} .
- φ ∈ Form(L) is satisfiable if A ⊨ φ[v] for some L-structure A and for some assignment v in A.
- For Γ ⊆ Form(L) and φ ∈ Form(L), φ is a logical consequence of Γ ('Γ ⊨ φ') if for all L-structures A and for all assignments v in A with A ⊨ ψ[v] for all ψ ∈ Γ, also A ⊨ φ[v].
- $\phi, \psi \in \text{Form}(\mathcal{L})$ are **logically equivalent** if $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Example: $\models \phi$ for ϕ from 9.6

Lecture 9 - 7/8

Note:

The symbol ' \models ' is now used in two ways:

'Γ $\models \phi$ ' means: ϕ a logical consequence of Γ

' $\mathcal{A} \models \phi[v]$ ' means: ϕ is satisfied in the \mathcal{L} -structure \mathcal{A} under the assignment v

This shouldn't give rise to confusion, since it will always be clear from the context whether there is a set Γ of \mathcal{L} -formulas or an \mathcal{L} -structure \mathcal{A} in front of ' \models '.

10. Free and bound variables

Recall Example 9.5: The formula

 $\phi = \forall x_0 \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)$

- is true in $\langle \mathbf{Z}; \cdot \rangle$ under any assignment v with $v(x_2) = 2$
- but false when $v(x_2) = 0$.

Whether or not $\mathcal{A} \models \phi[v]$ only depends on $v(x_2)$, not on $v(x_0)$ or $v(x_1)$.

The reason is: the variables x_0, x_1 are covered by a quantifier (\forall); we say they are "**bound**" (definition to follow!).

But the occurrence of x_2 is not "bound" by a quanitifer, but rather is "**free**".

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L} -formula, and $x \in \{x_0, x_1, \ldots\}$ a variable occurring in ϕ .

The occurrence of x in ϕ is **free**, if (i) ϕ is atomic, or (ii) $\phi = \neg \psi$ resp. $\phi = (\chi \rightarrow \rho)$ and x occurs free in ψ resp. in χ or ρ , or (iii) $\phi = \forall x_i \psi$, x occurs free in ψ , and $x \neq x_i$.

Every other occurrence of x in ϕ is called **bound**.

In particular, if $x = x_i$ and $\phi = \forall x_i \psi$, then x is bound in ϕ .

10.2 Example

 $(\exists x_0 P(\underbrace{x_0}_{b}, \underbrace{x_1}_{f}) \lor \forall x_1 (P(\underbrace{x_0}_{f}, \underbrace{x_1}_{b}) \to \exists x_0 P(\underbrace{x_0}_{b}, \underbrace{x_1}_{b})))$

Lecture 10 - 2/12

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L} -structure, let v, v' be assignments in \mathcal{A} and let ϕ be an \mathcal{L} -formula.

Suppose $v(x_i) = v'(x_i)$ for every variable x_i with a free occurrence in ϕ .

Then

$$\mathcal{A} \models \phi[v]$$
 iff $\mathcal{A} \models \phi[v']$.

Proof:

For ϕ atomic: exercise

Now use induction on the length of ϕ :

-
$$\phi = \neg \psi$$
 and $\phi = (\chi \rightarrow \rho)$: easy

- $\phi = \forall x_i \psi$:

IH: Assume the Lemma holds for ψ .

Let Free $(\phi):=\{x_j \mid x_j \text{ occurs free in } \phi\}$ Free $(\psi):=\{x_j \mid x_j \text{ occurs free in } \psi\}$

Lecture 10 - 3/12

 $\Rightarrow x_i \notin \operatorname{Free}(\phi)$ and

$$\mathsf{Free}(\phi) = \mathsf{Free}(\psi) \setminus \{x_i\}$$

Assume $\mathcal{A} \models \forall x_i \psi[v]$ (*) to show: for any v^* agreeing with v' except possibly at x_i : $\mathcal{A} \models \psi[v^*]$.

for all $x_j \in \operatorname{Free}(\phi)$:

$$v^{\star}(x_j) = v(x_j) = v'(x_j).$$

Let $v^+(x_j) := \begin{cases} v(x_j) & \text{if } j \neq i \\ v^*(x_j) & \text{if } j = i \end{cases}$

Then v^+ agrees with v except possibly at x_i .

Hence, by (*), $\mathcal{A} \models \psi[v^+]$.

But $v^{\star}(x_j) = v^+(x_j)$ for all $x_j \in \operatorname{Free}(\psi)$.

 \Rightarrow by IH, $\mathcal{A} \models \psi[v^{\star}]$

Lecture 10 - 4/12

10.4 Corollary

Let \mathcal{L} be a language, $\alpha, \beta \in Form(\mathcal{L})$. Assume the variable x_i has no free occurrence in α . Then

$$\models (\forall x_i(\alpha \to \beta) \to (\alpha \to \forall x_i\beta)).$$

Proof:

Let \mathcal{A} be an \mathcal{L} -structure and let v be an assignment in \mathcal{A} such that $\mathcal{A} \models \forall x_i (\alpha \to \beta)[v]$ (*)

to show:
$$\mathcal{A} \models (\alpha \rightarrow \forall x_i \beta)[v]$$
.

So suppose $\mathcal{A} \models \alpha[v]$ to show: $\mathcal{A} \models \forall x_i \beta[v]$.

So let v^* be an assignment agreeing with vexcept possibly at x_i . We want: $\mathcal{A} \models \beta[v^*]$

Lecture 10 - 5/12

10.5 Definition

A formula ϕ without free (occurrence of) variables is called a **statement** or a **sentence**.

If ϕ is a sentence then, for any \mathcal{L} -structure \mathcal{A} , whether or not $\mathcal{A} \models \phi[v]$ does not depend on the assignment v.

So we write $\mathcal{A} \models \phi$ if $\mathcal{A} \models \phi[v]$ for some/all v.

Say: ϕ is **true** in \mathcal{A} , or \mathcal{A} is a **model** of ϕ .

(→ 'Model Theory')

10.6 Example

Let $\mathcal{L} = \{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (we write x, y, z instead of x_0, x_1, x_2)

$$\phi_1 : \quad \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z) \phi_2 : \quad \forall x \exists y (f(x, y) \doteq c \land f(y, x) \doteq c) \phi_3 : \quad \forall x (f(x, c) \doteq x \land f(c, x) \doteq x)$$

and let $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3$.

Let $\mathcal{A} = \langle A; \circ; e \rangle$ be an \mathcal{L} -structure (i.e. \circ is an interpretation of f, and e is an interpretation of c.)

Then $\mathcal{A} \models \phi$ iff \mathcal{A} is a group.

Lecture 10 - 7/12

10.7 Example

Let $\mathcal{L} = \{E\}$ be a language with $E = P_i^{(2)}$ a binary relation symbol. Consider

$$\chi_{1} : \forall x E(x, x)$$

$$\chi_{2} : \forall x \forall y (E(x, y) \leftrightarrow E(y, x))$$

$$\chi_{3} : \forall x \forall y \forall z (E(x, y) \rightarrow (E(y, z) \rightarrow E(x, z)))$$

Then for any \mathcal{L} -structure $\langle A; R \rangle$:

$$\langle A; R \rangle \models (\chi_1 \land \chi_2 \land \chi_3)$$
 iff

R is an equivalence relation on A.

Note: Most mathematical concepts can be captured by first-order formulas.

10.8 Example

Let P be a 2-place (i.e. binary) predicate symbol, $\mathcal{L} := \{P\}$. Consider the statements

$$\psi_{1}: \forall x \forall y (P(x, y) \lor x \doteq y \lor P(y, x))$$

(\forall means either - or exclusively:
$$(\alpha \lor \beta) :\Leftrightarrow ((\alpha \lor \beta) \land \neg (\alpha \land \beta)))$$

$$\psi_2: \forall x \forall y \forall z ((P(x,y) \land P(y,z)) \rightarrow P(x,z))$$

$$\psi_3: \forall x \forall z (P(x,z) \rightarrow \exists y (P(x,y) \land P(y,z)))$$

$$\psi_{4}$$
: $\forall y \exists x \exists z (P(x, y) \land P(y, z))$

These are the axioms for a **dense linear order** without endpoints. Let $\psi = (\psi_1 \land \ldots \land \psi_4)$. Then $\langle \mathbf{Q}; \langle \rangle \models \psi$ and $\langle \mathbf{R}; \langle \rangle \models \psi$.

But: The '(Dedekind) Completeness' of $\langle \mathbf{R}; < \rangle$ is **not** captured in 1st-order terms using the langauge \mathcal{L} , but rather in 2nd-order terms, where also quantification over *subsets*, rather than only over *elements* of \mathbf{R} is used:

 $\forall A, B \subseteq \mathbf{R}((A \ll B) \rightarrow \exists c \in \mathbf{R}(A \leq \{c\} \leq B)),$ where $A \ll B$ means that a < b for every $a \in A$ and every $b \in B$ etc.

Lecture 10 - 9/12

10.9 Example: ACF_0 : Algebraically closed fields of characteristic zero.

 $\mathcal{L} := \{+, \times, 0, 1\}$, language of rings

Commutative, associative, distributive laws; the existence of multiplicative inverse of non-zero elements;

Characteristic 0: $1 + 1 \neq 0, 1 + 1 + 1 \neq 0, ...$

For each n = 2, 3, 4, ... a sentence ψ_n asserting that every non-constant polynomial has a root. (This is automatic for n = 1).

 $\forall a_0 \dots \forall a_n [\neg a_n = 0 \rightarrow \exists x (a_n x^n + \dots + a_0 = 0)]$

This set of axioms is **complete** and **decidable**. (Complete: every sentence ϕ , either ϕ or $\neg \phi$ is a logical consequence of the axioms.)

Examples 10.7, 10.8, 10.9 are of the type which will be explored in Part C Model Theory.

10.10 Example: Peano Arithmetic (PA)

This is historically a very important system, studied in Part C Godel's Incompleteness Thms. It is not complete and not decidable.

 $\mathcal{L} := \{0, +, \times, s\}$

The unary s is the "successor function" it is injective and its range if everything except 0.

Axioms for $+, \times$

Induction: for every unary formula ϕ the axiom

$$[\phi(0) \land \forall x(\phi(x) \to \phi(s(x)))] \to \forall y \phi(y)$$

This is weaker than a second order system proposed by Peano which states induction for every subset of N.

```
Lecture 10 - 11/12
```

10.11 Example: Set Theory

Several ways of axiomatizing a system for Set Theory, in which all (?) mathematics can be carried out.

The most popular system ZFC is introduced in B1.2 Set Theory, and more formally in Part C Axiomatic Set Theory. ZFC has:

 $\mathcal{L} := \{\in\}$, a binary relation for set membership

Axioms: existence of empty set, pairs, unions, power set,.....

10.12 Example: Second order logic

Lose completeness, compactness.

Lecture 10 - 12/12

11. Substitution

Goal: Given $\phi \in \text{Form}(\mathcal{L})$ and $x_i \in \text{Free}(\phi)$ - want to replace x_i by a term t to obtain a new formula $\phi[t/x_i]$ (read: ' ϕ with x_i replaced by t') - should have $\{\forall x_i \phi\} \models \phi[t/x_i]$

11.1 Example

Let $\mathcal{L} = \{f; c\}$ and let ϕ be $\exists x_1 f(x_1) \doteq x_0$. \Rightarrow Free $(\phi) = \{x_0\}$ and $\forall x_0 \phi'$, i.e. $\forall x_0 \exists x_1 f(x_1) \doteq x_0'$ says that f is onto. - if t = c then $\phi[t/x_0]$ is $\exists x_1 f(x_1) \doteq c$

- but if $t = x_1$ then $\phi[t/x_0]$ is $\exists x_1 f(x_1) \doteq x_1$, stating the existence of a fixed point of f no good: there are fixed point free onto functions, e.g. '+1' on Z.

Problem: the variable x_1 in t has become unintentionally bound in the substitution. To avoid this we define:

Lecture 11 - 1/8

11.2 Definition

For $\phi \in \text{Form}(\mathcal{L})$, for any variable x_i (not necessarily in $\text{Free}(\phi)$) and for any term $t \in \text{Term}(\mathcal{L})$, define the phrase

't is free for x_i in ϕ '

and the substitution

 $\phi[t/x_i]$ (' ϕ with x_i replaced by t')

recursively as follows:

(i) if ϕ is atomic, then t is free for x_i in ϕ and $\phi[t/x_i]$ is the result of replacing *every* occurrence of x_i in ϕ by t.

(ii) if $\phi = \neg \psi$ then t is free for x_i in ϕ iff t is free for x_i in ψ . In this case, $\phi[t/x_i] = \neg \alpha$, where $\alpha = \psi[t/x_i]$.

Lecture 11 - 2/8

(iii) if
$$\phi = (\psi \to \chi)$$
 then
 t is free for x_i in ϕ iff
 t is free for x_i in both ψ and χ .
In this case, $\phi[t/x_i] = (\alpha \to \beta)$,
where $\alpha = \psi[t/x_i]$ and $\beta = \chi[t/x_i]$.

(iv) if
$$\phi = \forall x_j \psi$$
 then
t is free for x_i in ϕ
if $i = j$ or

if $i \neq j$, and x_j does not occur in t, and t is free for x_i in ψ .

In this case $\phi[t/x_i] = \begin{cases} \phi & \text{if } i = j \\ \forall x_j \alpha & \text{if } i \neq j, \end{cases}$ where $\alpha = \psi[t/x_i]$.

11.3 Example

Let $\mathcal{L} = \{f, g\}$ and let ϕ be $\exists x_1 f(x_1) \doteq x_0$. $\Rightarrow g(x_0, x_2)$ is free for x_0 in ϕ and $\phi[g(x_0, x_2)/x_0]$ is $\exists x_1 f(x_1) \doteq g(x_0, x_2)$, but $g(x_0, x_1)$ is not free for x_0 in ϕ .

11.4 Lemma

Let \mathcal{L} be a first-order language, \mathcal{A} an \mathcal{L} -structure, $\phi \in Form(\mathcal{L})$ and t a term free for the variable x_i in ϕ . Let v be an assignment in \mathcal{A} and define

$$v'(x_j) := \begin{cases} v(x_j) & \text{if } j \neq i \\ \widetilde{v}(t) & \text{if } j = i \end{cases}$$

Then $\mathcal{A} \models \phi[v']$ iff $\mathcal{A} \models \phi[t/x_i][v]$.

Proof: **1.** For $u \in \text{Term}(\mathcal{L})$ let

 $u[t/x_i] :=$ the term obtained by replacing each occurrence of x_i in u by t

 $\Rightarrow \tilde{v'}(u) = \tilde{v}(u[t/x_i])$ (Exercise)

Lecture 11 - 4/8

2. If ϕ is **atomic**, say

 $\phi = P(t_1, \dots, t_k)$ for some $P = P_i^{(k)} \in \operatorname{Pred}(\mathcal{L})$ then

$$\begin{split} \mathcal{A} &\models \phi[v'] \\ \text{iff} \quad P_{\mathcal{A}}(\tilde{v'}(t_1), \dots, \tilde{v'}(t_k)) & \text{by def. '} \models' \\ \text{iff} \quad P_{\mathcal{A}}(\tilde{v}(t_1[t/x_i]), \dots, \tilde{v}(t_k[t/x_i])) & \text{by 1.} \\ \text{iff} \quad \mathcal{A} &\models P(t_1[t/x_i], \dots, t_k[t/x_i])[v] & \text{by def. '} \models' \\ \text{iff} \quad \mathcal{A} &\models \phi[t/x_i][v] \end{split}$$

Similarly, if ϕ is $t_1 \doteq t_2$.

3. Induction step

The cases \neg and \rightarrow are routine.

 \rightsquigarrow the only interesting case is $\phi = \forall x_j \psi$.

IH: Lemma holds for ψ .

Case 1: j = i $\Rightarrow \phi[t/x_i] = \phi$ by Definition 11.2.(iv)

$$\begin{aligned} x_i &= x_j \notin \operatorname{Free}(\phi) \\ \Rightarrow v \text{ and } v' \text{ agree on all } x \in \operatorname{Free}(\phi) \\ \Rightarrow \text{ by Lemma 10.3,} \\ \mathcal{A} &\models \phi[v'] \text{ iff } \mathcal{A} \models \phi[v] \text{ iff } \mathcal{A} \models \phi[t/x_i][v] \end{aligned}$$

Case 2: $j \neq i$ ' \Rightarrow ': Suppose $\mathcal{A} \models \forall x_j \psi[v']$ (*)

to show: $\mathcal{A} \models \forall x_j \psi[t/x_i][v]$

Lecture 11 - 6/8

So let v^* agree with v except possibly at x_j . to show: $\mathcal{A} \models \psi[t/x_i][v^*]$

Define $v^{\star\prime}(x_k) := \begin{cases} v^{\star}(x_k) & \text{if } k \neq i \\ \widetilde{v^{\star}}(t) & \text{if } k = i \end{cases}$ t is free for x_i in $\phi \Rightarrow$ t is free for x_i in ψ and t does not contain x_j .

IH \Rightarrow enough to show: $\mathcal{A} \models \psi[v^{\star'}]$

 $v^{\star\prime}$ and v' agree except possibly at x_i and x_j . But, in fact, they *do* agree at x_i :

$$v'(x_i) = \widetilde{v}(t) = \widetilde{v^{\star}}(t) = v^{\star'}(x_i),$$

where the 2nd equality holds, because v and v^* agree except possibly at x_i , which does not occur in t.

So $v^{\star\prime}$ and v' agree except possibly at $x_j \Rightarrow by (\star), \ \mathcal{A} \models \psi[v^{\star\prime}]$ as required.

'⇐': similar.
$$\Box$$

Lecture 11 - 7/8

11.5 Corollary For any $\phi \in Form(\mathcal{L}), t \in Term(\mathcal{L}),$

$$\models (\forall x_i \phi \to \phi[t/x_i]),$$

provided that the term t is free for x_i in ϕ .

Proof: Let \mathcal{A} be an \mathcal{L} -structure and let v be an assignment in \mathcal{A} .

Assume $\mathcal{A} \models \forall x_i \phi[v]$ (*) to show: $\mathcal{A} \models \phi[t/x_i][v]$

By Lemma 11.4, it suffices to show $\mathcal{A} \models \phi[v']$, where

$$v'(x_j) := \begin{cases} v(x_j) & \text{for } j \neq i \\ \widetilde{v}(t) & \text{for } j = i. \end{cases}$$

Since v and v' agree except possibly at x_i , this follows from (\star) .

Lecture 11 - 8/8

12. A formal system for Predicate Calculus

12.1 Definition

Associate to each first-order language \mathcal{L} the formal system $K(\mathcal{L})$ with the following axioms and rules (for any $\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}), t \in \text{Term}(\mathcal{L})$):

Axioms

A1 $(\alpha \to (\beta \to \alpha))$ A2 $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$ A3 $((\neg \beta \to \neg \alpha) \to (\alpha \to \beta))$

A4 $(\forall x_i \alpha \to \alpha[t/x_i])$, where *t* is free for x_i in α A5 $(\forall x_i(\alpha \to \beta) \to (\alpha \to \forall x_i\beta))$, provided that $x_i \notin \text{Free}(\alpha)$

A6 $\forall x_i x_i \doteq x_i$

A7 $(x_i \doteq x_j \rightarrow (\phi \rightarrow \phi'))$, where ϕ is *atomic* and ϕ' is obtained from ϕ by replacing some (not necessarily all) occurrences of x_i in ϕ by x_j

Lecture 12 - 1/8

Rules

MP (Modus Ponens) From α and $(\alpha \rightarrow \beta)$ infer β

 \forall (Generalisation) From α infer $\forall x_i \alpha$

Thinning Rule see 12.6

 ϕ is a **theorem of** $K(\mathcal{L})$ (write ' $\vdash \phi$ ') if there is a sequence (a **derivation**, or a **proof**) ϕ_1, \ldots, ϕ_n of \mathcal{L} -formulas with $\phi_n = \phi$ such that each ϕ_i either is an axiom or is obtained from earlier ϕ_i 's by MP or \forall .

For $\Gamma \subseteq \text{Form}(\mathcal{L})$, $\phi \in \text{Form}(\mathcal{L})$ define similarly that ϕ is **derivable in** $K(\mathcal{L})$ from the **hypotheses** Γ (write ' $\Gamma \vdash \phi$ '), except that the ϕ_i 's may now also be formulas from Γ , but we make the restriction that \forall may only be used for variables x_i not occurring free in any formula in Γ .

Lecture 12 - 2/8

12.2 Soundness Theorem for Pred. Calc. If $\Gamma \vdash \phi$ then $\Gamma \models \phi$.

Proof: Induction on length of derivation

Clear that A1, A2, and A3 are logically valid. So are A4 and A5 by Cor. 11.5 resp. Cor. 10.4.

Also A6 is logically valid: easy exercise.

A7: Let \mathcal{A} be an \mathcal{L} -structure and let v be any assignment in \mathcal{A} . Suppose that

 $\mathcal{A} \models x_i \doteq x_j[v]$ and $\mathcal{A} \models \phi[v]$.

We want to show that $\mathcal{A} \models \phi'[v]$ (with ϕ atomic).

Now $v(x_i) = v(x_j)$ $\Rightarrow \tilde{v}(t') = \tilde{v}(t)$ for any term t' obtained from tby replacing some of the x_i by x_j (easy induction on terms)

If ϕ is $P(t_1, \ldots, t_k)$ then ϕ' is $P(t'_1, \ldots, t'_k)$. $\mathcal{A} \models \phi[v]$ iff $P_{\mathcal{A}}(\tilde{v}(t_1), \ldots, \tilde{v}(t_k))$ iff $P_{\mathcal{A}}(\tilde{v}(t'_1), \ldots, \tilde{v}(t'_k))$ iff $\mathcal{A} \models P(t'_1, \ldots, t'_k)[v]$ iff $\mathcal{A} \models \phi'[v]$ as required Similarly, if ϕ is $t_1 \doteq t_2$.

So now all axioms are logically valid.

MP is sound: for any \mathcal{A} , v $\mathcal{A} \models \alpha \ [v]$ and $\mathcal{A} \models (\alpha \rightarrow \beta)[v]$ imply $\mathcal{A} \models \beta[v]$

Generalisation: IH for any \mathcal{A} , vif $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma$ then $\mathcal{A} \models \alpha[v]$ (*)

to show: $\mathcal{A} \models \forall x_i \alpha[v]$ for such \mathcal{A} , v.

So let v^* agree with v except possibly at x_i . $x_i \notin \operatorname{Free}(\psi)$ for any $\psi \in \Gamma$ $\Rightarrow \mathcal{A} \models \psi[v^*]$ for all $\psi \in \Gamma$ (by Lemma 10.3) $\Rightarrow \mathcal{A} \models \alpha[v^*]$ (by (*)) $\Rightarrow \mathcal{A} \models \forall x_i \alpha[v]$ as required. \Box

Lecture 12 - 4/8

12.3 Deduction Theorem for Pred. Calc.

If $\Gamma \cup \{\psi\} \vdash \phi$ then $\Gamma \vdash (\psi \rightarrow \phi)$.

Proof: same as for prop. calc. (Theorem 6.6) with one more step in the induction (on the length of the derivation).

IH: $\Gamma \vdash (\psi \rightarrow \phi_j)$ to show: $\Gamma \vdash (\psi \rightarrow \forall x_i \phi_j)$, where generalisation (\forall) has been used to infer $\forall x_i \phi_j$ under the hypotheses $\Gamma \cup \{\psi\}$

 $\Rightarrow x_i \notin \operatorname{Free}(\gamma)$ for any $\gamma \in \Gamma$ and $x_i \notin \operatorname{Free}(\psi)$ \Rightarrow by IH and \forall : $\Gamma \vdash \forall x_i(\psi \rightarrow \phi_j)$ **A5** ⊢ ($\forall x_i(\psi \rightarrow \phi_j) \rightarrow (\psi \rightarrow \forall x_i\phi_j)$), since $x_i \notin$ $Free(\psi)$

 \Rightarrow by **MP**, $\Gamma \vdash (\psi \rightarrow \forall x_i \phi_j)$ as required.

Lecture 12 - 5/8

12.4 Tautologies

If A is a tautology of the Propositional Calculus with propositional variables among p_0, \ldots, p_n , and if $\psi_0, \ldots, \psi_n \in \text{Form}(\mathcal{L})$ are formulas of Predicate Calculus, then the formula A' obtained from A by replacing each p_i by ψ_i is a **tautology of** \mathcal{L} :

Since A1, A2, A3 and MP are in $K(\mathcal{L})$, one also has $\vdash A'$ in $K(\mathcal{L})$.

May use the tautologies in derivations in $K(\mathcal{L})$.

Lecture 12 - 6/8

12.5 Example Swapping variables

Suppose x_j does not occur in ϕ . Then $\{\forall x_i \phi\} \vdash \forall x_j \phi[x_j/x_i]$

1	$orall x_i \phi$	$[\in \Gamma]$
2	$(\forall x_i \phi \to \phi[x_j/x_i])$	[A4]
3	$\phi[x_j/x_i]$	[MP 1,2]
4	$\forall x_j \phi[x_j/x_i]$	$[\forall]$

where \forall may be applied in line 4, since x_j does not occur in ϕ .

This proof would not work if $\Gamma = \{ \forall x_i \phi, x_j \doteq x_j \}$ (say). Hence need (besides **MP** and (\forall))

12.6 Thinning Rule

If
$$\Gamma \vdash \phi$$
 and $\Gamma' \supseteq \Gamma$ then $\Gamma' \vdash \phi$.

Lecture 12 - 7/8

12.7 Example

$$(\exists x_i \phi \to \psi) \vdash \forall x_i (\phi \to \psi),$$

where $x_i \notin \text{Free}(\psi)$.

Proof: Let
$$\Gamma = \{(\exists x_i \phi \rightarrow \psi), \neg \psi\}$$

1 $(\neg \forall x_i \neg \phi \rightarrow \psi)$ $[\in \Gamma]$
2 $((\neg \forall x_i \neg \phi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \forall x_i \neg \phi))$ [taut.]
3 $(\neg \psi \rightarrow \forall x_i \neg \phi)$ $[MP 1,2]$
4 $\neg \psi$ $[\in \Gamma]$
5 $\forall x_i \neg \phi$ $[MP 3,4]$
6 $(\forall x_i \neg \phi \rightarrow \neg \phi)$ $[A4]$
7 $\neg \phi$ $[MP 5,6]$

Note that in line 6, x_i is free for x_i in ϕ .

Hence $\Gamma \vdash \neg \phi$. So $(\exists x_i \phi \rightarrow \psi) \vdash (\neg \psi \rightarrow \neg \phi) \quad [DT]$ $(\exists x_i \phi \rightarrow \psi) \vdash (\phi \rightarrow \psi) \quad [A3, MP]$ $(\exists x_i \phi \rightarrow \psi) \vdash \forall x_i (\phi \rightarrow \psi) \quad [\forall]$

Lecture 12 - 8/8

13. The Completeness Theorem for Predicate Calculus

13.1 Theorem (Gödel)
Let
$$\Gamma \subseteq Form(\mathcal{L}), \ \phi \in Form(\mathcal{L}).$$

If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Two additional assumptions:

- Assume all γ ∈ Γ and φ are sentences the Theorem is true more generally, but the proof is much harder and applications are typically to sentences.
- Further assumption (for the start later we do the general case): $no \doteq -symbol$ in any formula of Γ or in ϕ .

Lecture 13 - 1/10

First Step

Call $\Delta \subseteq \text{Sent}(\mathcal{L})$ consistent if for no sentence ψ , both $\Delta \vdash \psi$ and $\Delta \vdash \neg \psi$.

13.2. To prove 13.1 it is enough to prove: (*) Every consistent set of sentences has a model.

i.e. Δ consistent \Rightarrow there is an \mathcal{L} -structure \mathcal{A} such that $\mathcal{A} \models \delta$ for every $\delta \in \Delta$.

Proof of 13.2: Assume $\Gamma \models \phi$ and assume (*). $\Rightarrow \Gamma \cup \{\neg \phi\}$ has no model $\Rightarrow_{(\star)} \Gamma \cup \{\neg \phi\}$ is not consistent $\Rightarrow \Gamma \cup \{\neg \phi\} \vdash \psi$ and $\Gamma \cup \{\neg \phi\} \vdash \neg \psi$ for some ψ $\Rightarrow_{DT} \Gamma \vdash (\neg \phi \rightarrow \psi)$ and $\Gamma \vdash (\neg \phi \rightarrow \neg \psi)$ for some ψ But $\Gamma \vdash ((\neg \phi \rightarrow \psi) \rightarrow ((\neg \phi \rightarrow \neg \psi) \rightarrow \phi))$ [taut.] $\Rightarrow \Gamma \vdash \phi$ [2xMP] $\Box_{13.2}$

Lecture 13 - 2/10

Second Step

We shall need an *infinite* supply of constant symbols.

To do this, let ϕ' be the formula obtained by replacing every occurrence of c_n by c_{2n} .

For $\Delta \subseteq \mathsf{Form}(\mathcal{L})$ let

$$\Delta' := \{ \phi' \mid \phi \in \Delta \}$$

Then

13.3 Lemma

(a) Δ consistent $\Rightarrow \Delta'$ consistent (b) Δ' has a model $\Rightarrow \Delta$ has a model.

Proof: Easy exercise. □

Lecture 13 - 3/10

Third Step

- Δ ⊆ Sent(L) is called maximal consistent if Δ is consistent, and for any ψ ∈ Sent(L): Δ ⊢ ψ or Δ ⊢ ¬ψ.
- $\Delta \subseteq \text{Sent}(\mathcal{L})$ is called **witnessing** if for all $\psi \in \text{Form}(\mathcal{L})$ with $\text{Free}(\psi) \subseteq \{x_i\}$ and with $\Delta \vdash \exists x_i \psi$ there is some $c_j \in \text{Const}(\mathcal{L})$ such that $\Delta \vdash \psi[c_j/x_i]$

13.4 To prove CT it is enough to show: Every maximal consistent witnessing set Δ of sentences has a model.

Lecture 13 - 4/10
For the proof of 13.4 we need 2 Lemmas:

13.5 Lemma

If $\Delta \subseteq Sent(\mathcal{L})$ is consistent, then for any sentence ψ , either $\Delta \cup \{\psi\}$ or $\Delta \cup \{\neg\psi\}$ is consistent.

Proof: Exercise – as for Propositional Calculus. □.

13.6 Lemma

Assume $\Delta \subseteq Sent(\mathcal{L})$ is consistent, $\exists x_i \psi \in Sent(\mathcal{L})$, $\Delta \vdash \exists x_i \psi$, and c_j is not occurring in ψ nor in any $\delta \in \Delta$.

Then $\Delta \cup \{\psi[c_j/x_i]\}$ is consistent.

Lecture 13 - 5/10

Proof:

Assume, for a contradiction, that there is some $\chi \in \text{Sent}(\mathcal{L})$ such that

 $\Delta \cup \{\psi[c_j/x_i]\} \vdash \chi \text{ and } \Delta \cup \{\psi[c_j/x_i]\} \vdash \neg \chi.$ May assume that c_j does *not* occur in χ (since $\vdash (\chi \rightarrow (\neg \chi \rightarrow \theta))$ for *any* sentence θ).

By DT,
$$\Delta \vdash (\psi[c_j/x_i] \rightarrow \chi)$$

and $\Delta \vdash (\psi[c_j/x_i] \rightarrow \neg \chi)$.

Then also

 $\Delta \vdash (\psi \rightarrow \chi) \text{ and } \Delta \vdash (\psi \rightarrow \neg \chi)$ (Exercise Sheet $\ddagger 4$ (2)(ii))

Lecture 13 - 6/10

By
$$\forall, \ \Delta \vdash \forall x_i(\psi \to \chi)$$

and $\Delta \vdash \forall x_i(\psi \to \neg \chi)$
(note that $x_i \notin \text{Free}(\delta)$ for any $\delta \in \Delta \subseteq \text{Sent}(\mathcal{L})$).

Now: $\vdash (\forall x_i(A \rightarrow B) \rightarrow (\exists x_i A \rightarrow B))$ for any $A, B \in Form(\mathcal{L})$ with $x_i \notin Free(B)$ (Exercise Sheet $\ddagger 4$, (2)(i))

$$\begin{split} \mathsf{MP} &\Rightarrow \Delta \vdash (\exists x_i \psi \rightarrow \chi) \\ \mathsf{and} \ \Delta \vdash (\exists x_i \psi \rightarrow \neg \chi) \\ (\chi, \neg \chi \in \mathsf{Sent}(\mathcal{L}), \text{ so } x_i \not\in \mathsf{Free}(\chi)) \end{split}$$

By hypothesis, $\Delta \vdash \exists x_i \psi$ \Rightarrow by MP, $\Delta \vdash \chi$ and $\Delta \vdash \neg \chi$ contradicting consistency of Δ .

□13.6

Lecture 13 - 7/10

Proof of 13.4:

Let Δ be any consistent set of sentences.

to show: Δ has a model assuming that any maximal consistent, witnessing set of sentences has a model.

By 13.3(a), Δ' is consistent and does not contain any c_{2m+1} .

Let $\phi_1, \phi_2, \phi_3, \ldots$ be an enumeration of Sent $(\mathcal{L}' \cup \{c_1, c_3, c_5, \ldots\})$.

Construct finite sets \subseteq Sent($\mathcal{L}' \cup \{c_1, c_3, c_5, \ldots\}$)

 $\Gamma_0\subseteq\Gamma_1\subseteq\Gamma_2\subseteq\ldots$

such that $\Delta' \cup \Gamma_n$ is consistent for each $n \ge 0$ as follows:

Lecture 13 - 8/10

Let $\Gamma_0 := \emptyset$.

If Γ_n has been constructed let

$$\begin{split} & \Gamma_{n+1/2} := \left\{ \begin{array}{ll} \Gamma_n \cup \{\phi_{n+1}\} & \text{if } \Delta' \cup \Gamma_n \cup \{\phi_{n+1}\} \\ & \text{is consistent} \\ \Gamma_n \cup \{\neg \phi_{n+1}\} & \text{otherwise} \end{array} \right. \\ & \Rightarrow \Gamma_{n+1/2} \text{ is consistent (Lemma 13.5)} \end{split}$$

Now, if $\neg \phi_{n+1} \in \Gamma_{n+1/2}$ or if ϕ_{n+1} is *not* of the form $\exists x_i \psi$, let $\Gamma_{n+1} := \Gamma_{n+1/2}$.

If not, i.e. if $\phi_{n+1} = \exists x_i \psi \in \Gamma_{n+1/2}$ then $\Delta' \cup \Gamma_{n+1/2} \vdash \exists x_i \psi$.

Choose *m* large enough such that c_{2m+1} does not occur in any formula in $\Delta' \cup \Gamma_{n+1/2} \cup \{\psi\}$ (possible since $\Gamma_{n+1/2} \cup \{\psi\}$ is finite and Δ' has only even constants).

Let $\Gamma_{n+1} := \Gamma_{n+1/2} \cup \{\psi[c_{2m+1}/x_i]\}$ \Rightarrow by Lemma 13.6, Γ_{n+1} is consistent.

Let $\Gamma := \Delta' \cup \bigcup_{n \ge 0} \Gamma_n$.

 \Rightarrow Γ is maximal consistent (as in Propositional Calculus) and Γ is witnessing (by construction).

By assumption, Γ has a model, say \mathcal{A} .

 \Rightarrow in particular, $\Gamma \models \delta$ for any $\delta \in \Delta'$

 \Rightarrow by Lemma 13.3(b), Δ has a model

□13.4

So to prove CT it remains to show: Every maximal consistent witnessing set Δ of sentences has a model.

Lecture 13 - 10/10

13.7 Theorem (CT after reduction 13.4) Let Γ be a maximal consistent witnessing set of sentences not containing $a \doteq$ -symbol. Then Γ has a model.

Proof: Let $A := \{t \in \text{Term}(\mathcal{L}) \mid t \text{ is closed}\}$ (recall: t closed means no variables in t).

A will be the domain of our model \mathcal{A} of Γ (\mathcal{A} is called **term model**).

For $P = P_n^{(k)} \in \operatorname{Pred}(\mathcal{L})$ resp. $f = f_n^{(k)} \in \operatorname{Fct}(\mathcal{L})$ resp. $c = c_n \in \operatorname{Const}(\mathcal{L})$ define the interpretations $P_{\mathcal{A}}$ resp. $f_{\mathcal{A}}$ resp. $c_{\mathcal{A}}$ by

$$P_{\mathcal{A}}(t_1, \dots, t_k) \text{ holds } :\Leftrightarrow \ \Gamma \vdash P(t_1, \dots, t_k)$$
$$f_{\mathcal{A}}(t_1, \dots, t_k) := f(t_1, \dots, t_k)$$
$$c_{\mathcal{A}} := c$$

Lecture 14 - 1/8

to show: $\mathcal{A} \models \Gamma$ (i.e. $\mathcal{A} \models \Gamma[v]$ for some/all assignments v in \mathcal{A} : note that Γ contains only sentences).

Let v be an assignment in \mathcal{A} , say $v(x_i) =: s_i \in A$ for i = 0, 1, 2, ...

Claim 1: For any $u \in \text{Term}(\mathcal{L})$: $\tilde{v}(u) = u[\vec{s}/\vec{x}]$ (:= the closed term obtained by replacing each x_i in u by s_i)

Proof: by induction on
$$u$$

 $-u = x_i \Rightarrow$
 $\tilde{v}(u) = v(x_i) = s_i = x_i[s_i/x_i] = u[\vec{s}/\vec{x}]$
 $-u = c \in \text{Const}(\mathcal{L}) \Rightarrow$
 $\tilde{v}(u[\vec{s}/\vec{x}]) = \tilde{v}(u) = v(c) = c_{\mathcal{A}}$
 $-u = f(t_1, \dots, t_k) \Rightarrow$
 $\tilde{v}(u) := f_{\mathcal{A}}(\tilde{v}(t_1), \dots, \tilde{v}(t_k))$
 $= f_{\mathcal{A}}(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}])$ by IH
 $= f(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}])$ by def. of $f_{\mathcal{A}}$
 $= f(t_1, \dots, t_k)[\vec{s}/\vec{x}]$ by def. of subst.
 $= u[\vec{s}/\vec{x}]$ $\Box_{\text{Claim 1}}$

Lecture 14 - 2/8

Claim 2: For any $\phi \in Form(\mathcal{L})$ without \doteq -symbol:

$$\mathcal{A} \models \phi[v] \text{ iff } \Gamma \vdash \phi[\vec{s}/\vec{x}],$$

where $\phi[\vec{s}/\vec{x}]$:= the sentence obtained by replacing each *free* occurrence of x_i by s_i : note that s_i is free for x_i in ϕ because s_i is a *closed* term.

Proof: by induction on ϕ

 ϕ atomic, i.e. $\phi = P(t_1, \dots, t_k)$ for some $P = P_n^{(k)} \in \operatorname{Pred}(\mathcal{L})$

Then

$$\begin{split} \mathcal{A} &\models \phi[v] \\ \text{iff} \quad P_{\mathcal{A}}(\tilde{v}(t_1), \dots, \tilde{v}(t_k)) & \text{[def. of `\models']} \\ \text{iff} \quad P_{\mathcal{A}}(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}]) & \text{[Claim 1]} \\ \text{iff} \quad \Gamma \vdash P(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}]) & \text{[def. of } P_{\mathcal{A}}] \\ \text{iff} \quad \Gamma \vdash P(t_1, \dots, t_k)[\vec{s}/\vec{x}] & \text{[def. subst.]} \\ \text{iff} \quad \Gamma \vdash \phi[\vec{s}/\vec{x}] \end{split}$$

Note that Claim 2 might be false for formulas of the form $t_1 \doteq t_2$: might have $\Gamma \vdash c_0 \doteq c_1$, but c_0, c_1 are distinct elements in A.

Induction Step

$$\mathcal{A} \models \neg \phi[v]$$
iff not $\mathcal{A} \models \phi[v]$ [def. of '\=']
iff not $\Gamma \vdash \phi[\vec{s}/\vec{x}]$ [IH]
iff $\Gamma \vdash \neg \phi[\vec{s}/\vec{x}]$ [Γ max. cons.]
$$\mathcal{A} \models (\phi \rightarrow \psi)[w]$$

$$\mathcal{A} \models (\phi \to \psi)[v]$$

iff not $\mathcal{A} \models \phi[v]$ or $\mathcal{A} \models \psi[v]$ [def. '\equiv']
iff not $\Gamma \vdash \phi[\vec{s}/\vec{x}]$ or $\Gamma \vdash \psi[\vec{s}/\vec{x}]$ [IH]
iff $\Gamma \vdash \neg \phi[\vec{s}/\vec{x}]$ or $\Gamma \vdash \psi[\vec{s}/\vec{x}]$ [Γ max.]
iff $\Gamma \vdash (\neg \phi[\vec{s}/\vec{x}] \lor \psi[\vec{s}/\vec{x}])$ [def. '\equiv']
iff $\Gamma \vdash (\phi[\vec{s}/\vec{x}] \to \psi[\vec{s}/\vec{x}])$ [taut.]
iff $\Gamma \vdash (\phi \to \psi)[\vec{s}/\vec{x}]$ [def. subst.]

$$\forall -\text{step '} \Rightarrow'$$
Suppose $\mathcal{A} \models \forall x_i \phi[v]$ (*)
but not $\Gamma \vdash (\forall x_i \phi)[\vec{s}/\vec{x}]$

$$\Rightarrow \Gamma \vdash (\neg \forall x_i \phi)[\vec{s}/\vec{x}] \qquad (\Gamma \text{ max.})$$

$$\Rightarrow \Gamma \vdash (\exists x_i \neg \phi)[\vec{s}/\vec{x}] \qquad (\text{Exercise})$$

Lecture 14 - 4/8

Now let ϕ' be the result of substituting each free occurrence of x_j in ϕ by s_j for all $j \neq i$.

$$\Rightarrow (\exists x_i \neg \phi) [\vec{s}/\vec{x}] = \exists x_i \neg \phi' \Rightarrow \Gamma \vdash \exists x_i \neg \phi'$$

 $\Gamma \text{ witnessing } \Rightarrow$ $\Gamma \vdash \neg \phi'[c/x_i] \text{ for some } c \in \text{Const}(\mathcal{L})$

Define

$$v^{\star}(x_{j}) := \begin{cases} v(x_{j}) & \text{if } j \neq i \\ c & \text{if } j = i \end{cases} \text{ and } s_{j}^{\star} := \begin{cases} s_{j} & \text{if } j \neq i \\ c & \text{if } j = i \end{cases}$$
$$\Rightarrow \neg \phi'[c/x_{i}] = \neg \phi[\vec{s^{\star}}/\vec{x}]$$
$$\Rightarrow \Gamma \vdash \neg \phi[\vec{s^{\star}}/\vec{x}]$$
$$\Rightarrow \Gamma \models \neg \phi[v^{\star}] \qquad [IH]$$

But, by (*), $\mathcal{A} \models \phi[v^*]$: contradiction.

Lecture 14 - 5/8

∀-step '⇐':

Suppose $\mathcal{A} \not\models \forall x_i \phi[v]$

 \Rightarrow for some v^{\star} agreeing with v except possibly at x_i

$$\mathcal{A} \models \neg \phi[v^*]$$

Let $s_j^* := \begin{cases} s_j & \text{for } j \neq i \\ v^*(x_j) & \text{for } j = i \end{cases}$

IH
$$\Rightarrow \Gamma \vdash \neg \phi[\vec{s^{\star}}/\vec{x}],$$

i.e. $\Gamma \vdash \neg \phi'[s_i^{\star}/x_i],$
where ϕ' is the result of substituting each free
occurrence of x_j in ϕ by s_j for all $j \neq i$

 $\Rightarrow \Gamma \vdash \exists x_i \neg \phi'$

(Exercise:

 $\chi \in \text{Form}(\mathcal{L}), \text{ Free}(\chi) \subseteq \{x_i\}, s \text{ a closed term}$ $\Rightarrow \vdash (\chi[s/x_i] \rightarrow \exists x_i \chi))$

Lecture 14 - 6/8

So

$$\Gamma \vdash \neg \forall x_i \neg \neg \phi'$$

$$\Rightarrow \ \Gamma \vdash \neg \forall x_i \phi'$$

$$\Rightarrow \ \Gamma \vdash (\neg \forall x_i \phi) [\vec{s}/\vec{x}]$$

$$\Rightarrow \ \Gamma \nvDash (\forall x_i \phi) [\vec{s}/\vec{x}]$$

$$\Box$$
Claim 2

Now choose any $\phi \in \Gamma \subseteq \text{Sent}(\mathcal{L})$

$$\Rightarrow \phi[\vec{s}/\vec{x}] = \phi$$

$$\Rightarrow \mathcal{A} \models \phi[v], \text{ i.e. } \mathcal{A} \models \phi \qquad [Claim 2]$$

$$\Rightarrow \mathcal{A} \models \Gamma$$

□_{13.7}

13.8 Modification required for \doteq -symbol

Define an equivalence relation E on A by

 t_1Et_2 iff $\Gamma \vdash t_1 \doteq t_2$

(easy to check: this *is* an equivalence relation, e.g. transitivity = (1)(ii) of sheet $\ddagger 4$).

Let A/E be the set of equivalence classes t/E (with $t \in A$).

Define \mathcal{L} -structure \mathcal{A}/E with domain A/E by

$$P_{\mathcal{A}/E}(t_1/E, \dots, t_k/E) :\Leftrightarrow \Gamma \vdash P(t_1, \dots, t_k)$$
$$f_{\mathcal{A}/E}(t_1/E, \dots, t_k/E) := f_{\mathcal{A}}(t_1, \dots, t_k)$$
$$c_{\mathcal{A}/E} := c_{\mathcal{A}}/E$$

check: independence of representatives of t/E (this is the purpose of Axiom **A7**).

Rest of the proof is much the same as before.

□13.1

Lecture 14 - 8/8

14. Applications of Gödel's Completeness Theorem

14.1 Compactness Theorem for Predicate Calculus

Let \mathcal{L} be a first-order language and let $\Gamma \subseteq Sent(\mathcal{L})$.

Then Γ has a model iff every finite subset of Γ has a model.

Proof: as for Propositional Calculus – Exercise sheet $\ddagger 4$, (5)(ii).

14.2 Example

Let $\Gamma \subseteq Sent(\mathcal{L})$. Assume that for every $N \ge 1$, Γ has a model whose domain has at least Nelements.

Then Γ has a model with an infinite domain.

Lecture 15 - 1/9

Proof:

For each $n \geq 2$ let χ_n be the sentence

$$\exists x_1 \exists x_2 \cdots \exists x_n \bigwedge_{1 \le i < j \le n} \neg x_i \doteq x_j$$

$$\Rightarrow \text{ for any } \mathcal{L}\text{-structure } \mathcal{A} = \langle A; \ldots \rangle,$$

$$\mathcal{A} \models \chi_n \text{ iff } \sharp A \ge n$$

Let $\Gamma' := \Gamma \cup \{\chi_n \mid n \ge 1\}.$

If $\Gamma_0 \subseteq \Gamma'$ is finite, let N be maximal with $\chi_N \in \Gamma_0$. By hypothesis, $\Gamma \cup \{\chi_N\}$ has a model. $\Rightarrow \Gamma_0$ has a model (note that $\vdash \chi_N \to \chi_{N-1} \to \chi_{N-2} \to ...)$

⇒ By the Compactness Theorem 14.1, Γ' has a model, say $\mathcal{A} = \langle A; ... \rangle$

 $\Rightarrow \mathcal{A} \models \chi_n \text{ for all } n \Rightarrow \ \sharp A = \infty \qquad \Box$

Lecture 15 - 2/9

14.3 The Löwenheim-Skolem Theorem

Let $\Gamma \subseteq Sent(\mathcal{L})$ be consistent.

Then Γ has a model with a countable domain.

Proof:

This follows from the proof of the Completeness Theorem:

The **term model** constructed there was countable, because there are only countably many closed terms.

14.4 Definition

(i) Let \mathcal{A} be an \mathcal{L} -structure. Then the \mathcal{L} -theory of \mathcal{A} is

 $\mathsf{Th}(\mathcal{A}) := \{ \phi \in \mathsf{Sent}(\mathcal{L}) \mid \mathcal{A} \models \phi \},\$

the set of all \mathcal{L} -sentences true in \mathcal{A} . **Note:** Th(\mathcal{A}) is maximal consistent. (ii) If \mathcal{A} and \mathcal{B} are \mathcal{L} -structures with Th(\mathcal{A}) = Th(\mathcal{B}) then \mathcal{A} and \mathcal{B} are **elementarily equivalent** (in symbols ' $\mathcal{A} \equiv \mathcal{B}$ ').

Lecture 15 - 3/9

Π

14.5 Remark

Let $\Gamma \subseteq Sent(\mathcal{L})$ be any set of \mathcal{L} -sentences. Then TFAE:

- (i) Γ is strongly maximal consistent (i.e. for each \mathcal{L} -sentence ϕ , $\phi \in \Gamma$ of $\neg \phi \in \Gamma$)
- (ii) $\Gamma = Th(A)$ for some *L*-structure *A*

Proof: (i) \Rightarrow (ii): Completeness Theorem Rest: clear.

Note that Γ is maximal consistent if and only if Γ has models, and, for any two models \mathcal{A} and \mathcal{B} , $\mathcal{A} \equiv \mathcal{B}$.

Lecture 15 - 4/9

 \square

A worked example: Dense linear orderings without endpoints

Let $\mathcal{L} = \{<\}$ be the language with just one binary predicate symbol '<',

and let Γ be the \mathcal{L} -theory of dense linear orderings without endpoints (cf. Example 10.8) consisting of the axioms ψ_1, \ldots, ψ_4 :

$$\begin{array}{ll} \psi_1: & \forall x \forall y ((x < y \lor x \doteq y \lor y < x) \\ & \wedge \neg ((x < y \land x \doteq y) \lor (x < y \land y < x))) \\ \psi_2: & \forall x \forall y \forall z (x < y \land y < z) \rightarrow x < z) \\ \psi_3: & \forall x \forall z (x < z \rightarrow \exists y (x < y \land y < z)) \\ \psi_4: & \forall y \exists x \exists z (x < y \land y < z) \end{array}$$

14.6 (a) Examples

Q, R,]0,1[, $\mathbf{R} \setminus \{0\}$, $[\sqrt{2}, \pi] \cap \mathbf{Q}$,]0,1[\cup]2,3[, or $\mathbf{Z} \times \mathbf{R}$ with lexicographic ordering: (a, b) < (c, d) $\Leftrightarrow a < c$ or (a = c & b < d)

(b) Counterexamples [0, 1], Z, {0}, \mathbb{R}]0, 1[or $\mathbb{R} \times \mathbb{Z}$ with lexicographic ordering

14.7 Theorem

Let Γ be the theory of dense linear orderings without endpoints, and let $\mathcal{A} = \langle A; \langle \mathcal{A} \rangle$ and $\mathcal{B} = \langle B; \langle \mathcal{B} \rangle$ be two countable models. Then \mathcal{A} and \mathcal{B} are isomorphic, i.e. there is an order preserving bijection between A and B.

Proof: Note: *A* and *B* are infinite. Choose an enumeration (no repeats)

$$A = \{a_1, a_2, a_3, \ldots\} \\ B = \{b_1, b_2, b_3, \ldots\}$$

Define $\phi: A \to B$ recursively s.t. for all n:

 (\star_n) for all $i, j \leq n$: $\phi(a_i) <_{\mathcal{B}} \phi(a_j) \Leftrightarrow a_i <_{\mathcal{A}} a_j$

Suppose ϕ has been defined on $\{a_1, \ldots, a_n\}$ satisfying (\star_n) .

Let $\phi(a_{n+1}) = b_m$, where m > 1 is minimal s.t.

for all $i \leq n$: $b_m <_{\mathcal{B}} \phi(a_i) \Leftrightarrow a_{n+1} <_{\mathcal{A}} a_i$,

i.e. the position of
$$\phi(a_{n+1})$$

relative to $\phi(a_1), \ldots, \phi(a_n)$

is the same as that of a_{n+1} relative to a_1, \ldots, a_n

(possible as $\mathcal{A}, \mathcal{B} \models \Gamma$).

$$\Rightarrow (\star_{n+1})$$
 holds for a_1, \ldots, a_{n+1}

 $\Rightarrow \phi$ is injective

And ϕ is surjective, by minimality of m.

Lecture 15 - 7/9

14.8 Corollary

 Γ is maximal consistent

Proof: to show: Th(A) = Th(B) for any $A, B \models \Gamma$ (by Remark 14.5)

By the Theorem of Löwenheim-Skolem (14.3), Th(\mathcal{A}) and Th(\mathcal{B}) have countable models, say \mathcal{A}_0 and \mathcal{B}_0 .

 $\Rightarrow \mathsf{Th}(\mathcal{A}_0) = \mathsf{Th}(\mathcal{A}) \text{ and } \mathsf{Th}(\mathcal{B}_0) = \mathsf{Th}(\mathcal{B})$

Theorem 14.7 $\Rightarrow A_0$ and B_0 are isomorphic

 $\Rightarrow \mathsf{Th}(\mathcal{A}_0) = \mathsf{Th}(\mathcal{B}_0)$

 $\Rightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B}) \qquad \Box$

Lecture 15 - 8/9

Recall that \boldsymbol{R} is $\boldsymbol{\text{Dedekind complete}}$:

for any subsets $A, B \subseteq \mathbf{R}$ with A' < B'(i.e. a < b for any $a \in A, b \in B$) there is $\gamma \in \mathbf{R}$ with $A' \leq \{\gamma\} \leq B$.

 ${\bf Q}$ is ${\boldsymbol{\mathsf{not}}}$ Dedekind complete:

take
$$A = \{x \in \mathbf{Q} \mid x < \pi\}$$

 $B = \{x \in \mathbf{Q} \mid \pi < x\}$

14.9 Corollary $Th(\langle \mathbf{Q}; \langle \rangle) = Th(\langle \mathbf{R}; \langle \rangle)$

In particular, the Dedekind completness of ${f R}$ is **not** a first-order property,

i.e. there is no $\Delta \subseteq Sent(\mathcal{L})$ such that for all \mathcal{L} -structures $\langle A; \langle \rangle$,

 $\langle A; \langle \rangle \models \Delta$ iff $\langle A; \langle \rangle$ is Dedekind complete.

Lecture 15 - 9/9

15. Normal Forms(a) Prenex Normal Form

A formula is in **prenex normal form (PNF)** if it has the form

$$Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \psi,$$

where each Q_i is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers.

15.1 PNF-Theorem

Every $\phi \in Form(\mathcal{L})$ is logically equivalent to an \mathcal{L} -formula in **PNF**.

Proof: Induction on ϕ (working in the language with $\forall, \exists, \neg, \land$):

 ϕ atomic: OK

Lecture 16 - 1/6

$$\phi = \neg \psi,$$

say $\phi \leftrightarrow \neg Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \chi$

Then $\phi \leftrightarrow Q_1^- x_{i_1} Q_2^- x_{i_2} \cdots Q_r^- x_{i_r} \neg \chi$, where $Q^- = \exists$ if $Q = \forall$, and $Q^- = \forall$ if $Q = \exists$

 $\phi = (\chi \land \rho)$ with χ, ρ in PNF Note that $\vdash (\forall x_j \psi[x_j/x_i] \leftrightarrow \forall x_i \psi)$, provided x_j does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ do not occur in ρ and vice versa.

But then, e.g. $(\forall x \alpha \land \exists y \beta) \leftrightarrow \forall x \exists y (\alpha \land \beta)$ etc.

Lecture 16 - 2/6

(b) Skolem Normal Form

Recall: In the proof of CT, we introduced witnessing new constants for existential formulas such that

 $\exists x \phi(x)$ is satisfiable iff $\phi(c)$ is satisfiable.

This way an $\exists x$ in front of a formula could be removed at the expense of a new constant.

Now we remove existential quantifiers 'inside' a formula at the expense of extra function symbols:

15.2 Observation:

Let $\phi = \phi(x, y)$ be an \mathcal{L} -formula with $x, y \in Free(\phi)$. Let f be a new unary function symbol (not in \mathcal{L}).

Lecture 16 - 3/6

Then $\forall x \exists y \phi(x, y)$ is satisfiable iff $\forall x \phi(x, f(x))$ is satisfiable. (f is called a **Skolem function** for ϕ .)

Proof: '⇐': clear

' \Rightarrow ': Let \mathcal{A} be an \mathcal{L} -structure with $\mathcal{A} \models \forall x \exists y \phi(x, y)$

 \Rightarrow for every $a \in A$ there is some $b \in A$ with $\phi(a,b)$

Interpret f by a function assigning to each $a \in A$ one such b (this uses the Axiom of Choice!).

Example: $\mathbf{R} \models \forall x \exists y (x \doteq y^2 \lor x \doteq -y^2) - here$ $f(x) = \sqrt{|x|}$ will do.

Lecture 16 - 4/6

15.3 Theorem

For every \mathcal{L} -formula ϕ there is a formula ϕ^* (with new constant and function symbols) having only universal quantifiers in its PNF such that

 ϕ is satisfiable iff ϕ^* is.

More precisely, any \mathcal{L} -structure \mathcal{A} can be made into a structure \mathcal{A}^* interpreting the new constant and function symbols such that

 $\mathcal{A} \models \phi \text{ iff } \mathcal{A}^* \models \phi^*.$

Lecture 16 - 5/6